
Lecture Notes 
in Physics 
Edited by .I. Ehlers, M~Jnchen, K. Hepp, Z0rich 
R. Kippenhahn, M~Jnchen, H. A. Weidenmeller, Heidelberg 
and J. Zittartz, KSIn 
Managing Editor: W. BeiglbSck, Heidelberg 

97 

L. R Hughston 

Twistors and Particles 

Springer-Verlag 
Berlin Heidelberg New York 1979 



Author 

Lane Palmer Hughston 
The Mathematical Institute 
University of Oxford 
Oxford 
England 

ISBN 3-540-09244-? Springer-Verlag Berlin Heidelberg New York 
ISBN 0-38?-09244-? Springer-Verlag New York Heidelberg Berlin 

Library of Congress Cataloging in Publication Data. Hughston, L P 1951- 
Twistors and particles. (Lecture notes in physics ; 97) Bibliography: p. Includes index. 
1. Particles (Nuclear physics) 2. Twistor theory. I. Title. I1. Series. 
QC793.3.F5H83 539.7'21 ?9-13891 

This work is subject to copyright. All rights are reserved, whether the whole or 
part of the material is concerned, specifically those of translation, reprinting, 
re-use of illustrations, broadcasting, reproduction by photocopying machine or 
similar means, and storage in data banks. Under § 54 of the German Copyright 
Law where copies are made for other than private use, a fee is payable to the 
publisher, the amount of the fee to be determined by agreement with the publisher. 
© by Springer-Verlag Berlin Heidelberg 1979 
Printed in Germany 
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 
2153/3140-543210 



PREFACE 

The momentum of the mind is all toward abstraction. 

- Wallace Stevens, Opus Posthumous 

Within the framework of twistor theory the structure of spacetime is relegated, 

in contrast to the position which it has held since the beginning of the twentieth 

century, to a status of secondary character. Whereas in the past spacetime has al- 

ways served as the background against which phenomena are to be interpreted--and in- 

deed, according to Einstein's theory of gravitation, spacetime serves moreover as a 

basic dynamical entity itself--the new view which the twistor theorists are advoca- 

ting takes twistor space, with the many rich and variegated aspects of its complex 

analytic structure, as the primary descriptive device and dynamical construction 

in terms of which phenomena are to be understood. 

The difficulties inherent in a spacetime description have long been appreciated 

by many authors. Julian Schwinger, for example, in his preface to Selected Papers 

on Quantum Electrodynamics summarizes the situation aptly when he remarks that 

"... The localization of charge with indefinite precision requires for its realiza- 

tion a coupling with the electromagnetic field that can obtain arbitrarily large 

magnitudes. The resulting appearance of divergences, and contradictions, serves to 

deny the basic measurement hypothesis. We conclude that a convergent theory cannot 

be formulated consistently within the framework of present space-time concepts. To 

limit the magnitude of interactions while retaining the customary coordinate des- 

cription is contradictory, since no mechanism is provided for precisely localized 

measurements." With a similar attitude towards this question Einstein, at the 

end of The Meaning of Relativity, concludes that "One can give good reasons why 

reality cannot at all be represented by a continuous field. From the quantum 

phenomena it appears to follow with certainty that a finite system of finite 

energy can be completely described by a finite set of numbers (quantum numbers). 

This does not seem to be in accordance with a continuum theory, and must lead to an 

attempt to find a purely algebraic theory for the description of reality." Of 
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course when he refers to a continuum Einstein means spacetime, taken with its 

usual real differentiable structure. In twistor theory, however, the continuum 

which arises is that of the complex number system, and those aspects of the geometry 

of twistor space which are of interest to physics stem more specifically from its 

complex analytic structure, rather than its real differentiable structure. The 

general characterization of the structures which can arise in the case of complex 

analytic manifolds has been the subject of intense investigation by mathematicians, 

especially with the advent of the powerful techniques of sheaf cohomology theory. 

One of the precepts of twistor theory is that here, within a suitably formulated 

sheaf cohomological framework, we have the proper basis for a "purely algebraic" 

description that is compatible both With the ideas of relativity and with the 

principles of quantum mechanics. 

This view has met with a reasonable degree of success, and it has been possible, 

using methods of algebraic geometry and complex analytic geometry, for twistor 

theorists to assemble the outlines of a new approach to elementary particle 

physics. The subject is still in its infancy and in a rapid state of development, 

and thus many of its results are only of a preliminary character and are both 

subject to and deserving of considerable modification and improvement. In spite of 

their tentative nature, it seemed appropriate nonetheless to prepare an account of 

some of these matters for a wider audience, with the hope that it might stimulate 

or otherwise prove a useful aid in further and more extensive research into the 

subject. With this purpose in mind the following study is presented. 

Although a fair amount of background material is covered in Chapters 2 and 3, 

the reader previously uninitiated into the mysteries of twistor theory may find it 

necessary to consult some additional references. For the two-component spinor 

formalism see Pirani (1965), Penrose (1968a), and the forthcoming book by Rindler 

and Penrose. For further reading in basic twistor theory see Penrose (1967), 

Penrose and MacCallum (1972), and Penrose (1975a). Although a specialized know- 

ledge of elementary particle physics is not necessary, at the outset, for reading 

this volume, it is assumed nonetheless that the reader is familiar with basic 



quantum mechanics, and is acquainted already, to some extent, with the quark 

model. 
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CHAPTER 1 

INTRODUCTORY REMARKS 

Progress in any aspect is a movement 

through changes in terminology. 

- Wallace Stevens, Opus Posthumous 

This study will touch on a variety of topics concerning twistor theory and 

elementary particle physics. A few of these topics will be treated in some detail, 

but none exhaustively. The purpose of this work is to describe how it is possible, 

using twistor methods, to gain some understanding of the microscopic structural de- 

grees of freedom responsible for the properties of elementary particles. 

In a very general sense the methodology of twistor theory consists simply of 

the application of techniques of complex analytic geometry to problems in physics. 

Inherent in the twistor program are many changes in terminology, whereby a number of 

the familiar concepts of physics are reexpressed in the language of algebraic 

geometry and analytic geometry. "The physicist always prefers to sacrifice the less 

perfect concepts of physics rather than the simpler, more perfect, and more lasting 

concepts of geometry, which form the solidest foundation of all his theories", said 

Mach, and there is certainly a good deal of reason in his remark: but the twistor 

philosophy goes one step further, and insists that within geometry itself one can 

discover all the laws of physics. 

The organization of this volume is as follows. Chapters 2 and 3 view twistor 

space from the standpoint of classical physics. Algebraic geometry is to complex 

analytic geometry as classical physics is to quantum physics--and in Chapters 2 and 

3 twistor space is explored with various tools of algebraic geometry. Most of the 

information in Chapter 2 is standard background material, and is summarized here 

for the reader previously unacquainted with twistor theory. Twistors are first 

defined in terms of classical systems of zero rest mass--that is to say, classical 

special relativistic systems defined by a null momentum and an angular momentum 



which is related to the momentum in such a way that twisters transform in a natural 

way under the action of the group SU(2,2), and, in particular, the Poincar~ group. 

In §2.4 it is shown that twisters can be characterized in terms of the solutions of 

a certain differential equation called the "twister equation". In §§2.5 and 2.6 

twisters are described in terms of the geometry of complex projective 3-space p3 . 

Complex projective lines in p3 correspond to points in complex Minkowski space; 

using this correspondence (the "Klein representation") various aspects of the geome- 

try of spacetime are expressed in twister terms, and vice-versa. 

In Chapter 3 it is shown how massive systems can be built up out of two or more 

twisters. The momentum and the angular momentum are described in terms of a single 

two-index symmetric "kinematical twister". Theorem 3.3.1 shows how any massive sys- 

tem can be decomposed into two or more twister constituents. Thus, massive systems 

(at the classical level) can always be regarded as being "made up" out of twisters. 

Twisters are, in a certain sense, the elementary constituents of matter. For a 

given momentum and angular momentum there are internal degrees of freedom which yet 

remain, mixing the various twister constituents. Theorems 3.4.2 and 3.4.14 show the 

relevant groups which leave the momentum and angular momentum of an n-twister system 

invariant. These groups are called the "n-twister internal symmetry groups", and, 

for each value of n, contain U(n) as a subgroup. It is proposed that these internal 

degrees of freedom are in some sense responsible for the phenomenological unitary 

groups which arise naturally in elementary particle classification schemes (e.g., 

SU(3)). In §3.5 a center of mass twister is introduced for n-twister systems. This 

construction plays a useful role in a number of problems. 

In Chapter 4 the rules of twister quantization are introduced for systems com~ 

posed of a single twister. It is shown how solutions of the zero rest mass equations 

can be obtained in terms of holomorphic functions defined over suitable domains of 

twister space. Both positive and negative helicity fields are discussed, and the 

differences in the relevant contour integral formulae for evaluating the fields, in 

the two cases, are noted. The positive frequency condition is discussed in §4.5, and 

the whole procedure is illustrated with the example of an elementary state. 

In Chapter 5 massive fields are desexibed in terms of holomorphic functions of 



two or more twisters. It is proposed that observables correspond to holomorphic 

differential operators with polynomial coefficients. Explicit expressions are pre- 

sented for the operators corresponding to momentum, angular momentum, mass, and 

spin. In §5.5 the operators corresponding to "internal" observables are discussed, 

and are described explicitly in the cases of one, two, and three twisters. 

In Chapter 6 the scheme is applied to the low-lying baryons--that is to say, 

the N(949) octet and the A(1232) decimet. After a brief review of the quark model 

(described in a language suitable for our purposes) it is demonstrated how the low- 

lying baryons can be represented in terms of certain types of holomorphic functions 

of three twisters. Baryons are not regarded as bound states of quarks. No color 

degrees of freedom are introduced. 

In Chapter 7 the methods of Chapter 6 are extended so as to apply to more gen- 

eral systems. Mesons are introduced as quark-antiquark bound states, described in 

terms of holomorphic functions of six twisters. The charge conjugation quantum num- 

ber plays a crucial role in the representation of these states. Orbital angular mo- 

mentum is described in twister terms, and it is shown how orbital excitations of the 

quark-antiquark system lead to meson resonances. Baryon resonances are represented 

as excitations of a quark-diquark bound state. The deuteron is briefly discussed, 

from a twister point of view, in the last section of Chapter 7. In Chapter 8, after 

a review of the properties of leptons and of parity violation in weak interactions, 

a model for sequential leptons is built up in twister terms. Chapters 9 and i0 are 

concerned with further mathematical developments in the theory. In Chapter 9 the 

methods of sheaf cohomology are introduced, and these are applied to various prob- 

lems in Chapter i0, the aim being to sharpen up much of the material of the previous 

chapters, and to open up the doors to more extensive developments. 

The tentative nature of any general inferences that can now be put forward in 

connection with the twister particle program, or, for that matter, twister theory in 

general, should undoubtedly be apparent to anybody working in this subject. One 

need merely consider the vast range of phenomena which so far have resisted any for- 

mulation in twister terms whatsoever. Nonetheless, significant conclusions are be- 

ing drawn along certain lines, and are receiving continually increasing support. 



In particular, the central role of the twistor program in connection with Einstein's 

theory seems to me now firmly established, and there does not seem to be any reason 

now why particle physics as a whole should not be amenable to treatment within the 

framework of twistor theory. 



CHAPTER 2 

ASPECTS OF THE GEOMETRY OF TWISTOR SPACE 

2.1 Classical Systems of Zero Rest Mass. 

There are various ways of building up the framework of twistor theory, and it 

must be said that it is not exactly clear where to begin. For the purposes of in- 

vestigations into elementary particle physics a convenient, if not totally adequate, 

place to start is with the observation that a point Z ~ in twistor space (5 = 0,1,2,3) 

can be represented naturally in terms of physical quantities as a classical system 

of zero rest mass. 

Such a system is characterized by its total momentum pa , which is null and 

future-pointing, and its angular momentum M ab (= -M ba) with respect to a particular 

choice of origin in spacetime. 

Together these quantities must satisfy a relation to the effect that if we form 

the spin-vector 

(2.1 .i) 

then the proportionality S 
a 

S 1 b cd 
a = ~ Sabcd P M 

= sP holds for some value of the number s. The magni- a 

tude of s is the spin of the system, and s itself is called the helicity. Positive 

helicity systems are called right-handed, and negative helicity systems are called 

left-handed. 

There is a certain algebraic characterization of the momentum and angular momen- 

tum that ensures that together they constitute a zero rest mass (henceforth abbrevi- 

ated ZRM) system: 

2.1.2 Proposition. A pair {pa , Mab} represents a ZRM system if and only if 

there exists a pair of spinors (w A , ZA,) such that 

a -A A' 
(2.1.3) P = T 

and 

(2.1.4) 

where ~A is the complex conjugate of A' 

(A-B) A'B' i~(A' B') AB M ab = i~ ~ ~ - 

-A' A 
, and ~ is the complex conjugate of 



A I 
Proof (1). The existence of a spinor ~ such that equation (2.1.3) is satis- 

fied is precisely the condition that pa should be null and future-pointing. 

,MabPb 1 abcd M The spin-relation S a = sP a can be written = sP a where *M ab := ~ ~ "cd 

is the dual of M ab. If we write 

.-A'B' AB (2.1.5) *M ab = -ipABt A'B' + l~ ~ , 

AB 
where ~ is a symmetric spinor, then the spin-relation, using equation (2.1.3), 

reads 

(2.1.6) _i AB~B A' i~A'B' -A -A A' 
+ ~B,~ = sT 

Contracting this relation with ~A yields ~AB~A~ B = 0, which implies -i~ AB = (A~B) 

for some choice of A, the factor of -i being included for later convenience. 

Finally, using the fact that equation (2.1.5) implies 

A'B' -A'B' AB (2.1.7) M ab = BABe + p C , 

we deduce equation (2.1.4). [] 

The spinor pair (w A , ~A, ) completely determines the ZRM system, and defines a 

point Z ~ in twistor space according to the scheme 

i (2.1.8) (Z 0 , Z 1 , Z 2 , Z 3) = (~0 0 , ~0 , 4 0, , ~i,) 

Note, on the other hand, that a ZRM system determines its associated twistor only up 

to an overall phase factor, since the momentum and the angular momentum are invariant 

under the transformation 

(2.1.9) ( A , ~A,) -----+ el@( A , ZA.) 

It is interesting to observe that the helicity of a ZRM system can be expressed 

directly in twistor terms. For this purpose it is useful to define the complex con- 

_n I 
jugate twistor Z~ by the spinor pair (~A , ~ ). A short calculation establishes 

that the inner product defined by 

A- -A I 
(2.1.10) Z~Zd = ~ ZA + ZA 'W 



7 

is precisely twice the helicity of the system, i.e. we have Z~Z = 2s. 

One might be inclined initially to think that the freedom expressed in (2.1.9) 

is of an irrelevant nature, and arises perhaps on account of some slight inadequacy 

in the representation that has been chosen for twistors in terms of systems of zero 

rest mass. Nothing could be further from the truth, however. One of the remarkable 

things about twistors is that they do, in fact, carry more information in them than 

just momentum and angular momentum. This fact takes on great significance, as we 

shall see, when quantum mechanics is brought into the picture. 

2.2 The Action of the Poincar~ Group. 

It is of considerable interest to know how the action of the Poincar~ group is 

expressed in twistor terms. Since our ultimate goal is to express various field 

quantities in terms of twistors, and since these field quantities must themselves be 

subject to a particular behavior under the action of the Poincar~ group, it is of 

significance to study the action of the Poincar~ group on twistors first. 

Under the spacetime translation x a --÷ x a + r a the angular momentum M ab trans- 

forms according to the rule 

(2.2.1) M ab --+ M ab + 2r[ap b] 

It is not difficult to check that for a ZRM system the transformation on Z ~ that 

induces (2.2.1) is 

A A AA' 
(2.2.2) to ---~ W + ir HA, ' ZA' --÷ ZA' 

This transformation can therefore be regarded as defining the action of a spacetime 

translation on Z ~. 

The action of a restricted Lorentz transformation on a ZRM system is specified 

by 

(2.2.3) Pa --+ AabPb 

For a restricted Lorentz transformation A 

--÷ A c. d M 
Mab a I~ cd 

b 
has the form a 

(2.2.4) A b : ~ B[ B' 
a A A' 



where ~A- is an element of the group SL(2,C), i.e. subject to the relation 

(2.2.5) ~ C~ D 
A B £CD =eAB 

The action on Z ~ which induces (2.2.3) is easily verified to be: 

(2.2.6) wA _~AB B - B' 
' "~ ' ~A' ~-~ ~A' ~B' 

By following a Lorentz transformation with a translation, we can realize the 

complete action of the restricted Poincare group on a twistor. This can be conven- 

iently expressed in the form 

(2.2.7) Z ~ --÷ P~Z ~ F 

where the transformation matrix P~ 

(2.2.8) P~ = 
8 

is given by 

-~A B ir ~A' 

-- B l 

0 ~A' ' 

with the usual laws of matrix multiplication applying in the contraction of Pe~ 

the spinor parts of Z ~. That is to say, we have 

_~A B '[ B' - B' (2.2.9) wA > wB + irAA A' ZB' ZA' --+ ZA' ZB' 

for the spinor parts of equation (2.2.7). 

with 

2.3 The Group SU(2,2). 

The complex conjugate twistor Z undergoes the complex conjugate transformation 

Z --+ P ~.~ when Z ~ undergoes transformation (2.2.7). Since the helicity s is 

Poincare invariant, the requirement that the inner product Z@Z be preserved implies 

that P~Py~ = (~  , where  6~ i s  t h e  t w i s t o r  K r o n e c k e r  d e l t a ,  g i v e n  i n  s p i n o r  p a r t s  

by :  

-E B 
(2.3.1) ~ = 

B' 
0 g 

A' 

U~$ U~$U d d forms the group U(2,2). This The set of all matrices satisfying = 65 



can be seen as follows. 

which is given explicitly by 

A- -A' 0- 1- -0' -i' 
(2.3.2) ZdZ = ~ ZA + ZA 'w = ~ Z0 + ~ Z1 + ~0 'W + Zl '~ 

If new variables are introduced according to the scheme 

0 1 
(2.3.3) W = (w+y) W = (X+Z) ~0' = (w-y) ~i' = (x-z) 

where w, x, y, and z are complex, then 

z ~- :~ +x~- y~-  ~ , (2.3.4) ~z z 

Such transformation matrices preserve the norm ZeZ , 

"infinity twistors", given by 

(2.3.6) IaB 
= I R = 

0 g 

which, according to a scheme to be elaborated in Section 2.6, represent the vertex 

of the null cone at infinity. 

which shows that the helicity is a quadratic Hermitian form of signature {++--}. 

The group U(2,2) is by definition the multiplicative group of complex linear trans- 

formations which preserve a quadratic Hermitian form of that signature. 

The group SU(2,2) is the subgroup of U(2,2) consisting of matrices which, in 

uYpya addition to satisfying = ~ , also preserve the twistor epsilon tensor 

g~Y~ , i.e.: 

(2.3.5) U~ U@ Uy U6@ g~@ = ~By6 

Condition (2.3.5) amounts to the same thing as requiring that U~@ have unit deter- 

minant. 

SU(2,2) is of special importance to physics inasmuch as it is locally isomor- 

phic with the 15-parameter conformal group of compactified Minkowski space (2) . The 

restricted Poincar~group is a subgroup of SU(2,2). A description of the relation- 

ship between the two groups can be facilitated with the introduction of the so-called 
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The infinity twistors are skew-symmetric, are complex conjugates of one-another, 

and satisfy the tollowing relations: 

(2.3.7) i~Si = 1 ~BY@ 1 s Sy@iy6 ~y 0 , I ~ = ~s 176 , I ~ = 

Poincare transformations are SU(2,2) transformations which have the property that 

they preserve the infinity twistors. 

2.4 The Twistor Equation. 

Another way in which twistor space arises naturally is as the solution set of 

the differential equation 

(2.4.1) = 0 , 

which, accordingly, is sometimes called the twistor equation. 

2.4.2 Preposition. The general solution of equation (2.4.1) is 

AA v 
(2.4.3) ~A(x ) = A _ ix ~A ~ 

A 
where ~ and ~A' are constant. 

Proof. Equation (2.4.1) can be written in the form 

(2.4.4) vB'B~C = ~ ~i BC~B'~DVD % 

Taking a derivative, we have 

(2.4.5) ~A'AvB'B~C = ~ El BC~AA'v VD ~B' D , 

which, using vA'(A~ c) = 0 , implies 

(2.4.6) B(CvA)A' B'~D 
V D = 0 

B'~D 
showing that VD is a constant spinor, which will be denoted 2iz B' , the factor of 

2i being for convenience. Substituting this result back into equation (2.4.4), 

integration then gives (2.4.3), with A appearing as a constant of integration. [] 

The pair (m A , ZA,) defines the twistor Z ~ , and ~A(x) is called the associated 

spinor field (3) of the twistor Z ~. It can be checked that the natural action of the 
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Poincare group on ~A(x) agrees with the action on Z ~ defined in Section 2.2. 

2.5 ~-Planes and 8-Planes. 

The location of a twistor Z6% in complex Minkowski space can be defined as the 

region for which the associated spinor field ~A(x) vanishes. From (2.4.3) this is 

evidently the condition that 

A . ~-A I 
(2.5.1) [0 = ix ZA' 

An ! 
Since equation (2.5.1) is linear in x , and represents a pair of conditions that 

these coordinates must satisfy, the solution for fixed A and ZA' must be a 2-plane. 

AA' 
Moreover it should be obvious that if x 0 represents any particular point satis- 

AA ' ~AA ' 
fying (2.5.1), then the general point satisfying this relation is x 0 + 

where the spinor 1 A is arbitrary. So the location of the twistor Z6% is the 2-plane 

consisting of all the endpoint positions of a complex vector IA A' springing from 

AA' A' . 
the point x 0 Each such complex vector is null. Moreover, since ~ is fixed, 

each such vector is orthogonal to any other. Thus Z d corresponds to a null 2-plane 

in Minkowski space. 

A' 
A point W in dual twistor space is represented by a spinor pair (O A T ) 

6% ' " 

Associated with W is a solution of the "primed" twistor equation 
6% 

(2.5.2) vA(A'D B') = 0 

given by 

A' A' . A'A 
(2.5.3) 0 = T + ix U A 

By analogy with Proposition (2.4.2) it is not difficult to see that equation (2.5.3) 

gives the general solution of (2.5.2). The locus of the dual twistor W is given 
6% 

by 

A' A'A 
(2.5.4) T = -ix ~A l 

A' A'A 
the region where D vanishes. In this case if x 0 represents any particular 

A'A + IA'A . 
solution to (2.5.4) then the general solution is given byx0 
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It is of interest to note that in complex Minkowski space there are two distinct 

systems of null 2-planes. The so-called Q-planes are those null 2-planes which 

correspond to twistors of valence [~], i.e. the Zd-type twistors. The ~-planes are 

which correspond to twistors of valence [I], i.e. the Wd-type those null 2-planes 

twistors. 

Any two distinct Q-planes have a unique intersection point in complex 

and ~ then for an Minkowski space. If the corresponding twistors are denoted Z 1 Z 2 

intersection point one must solve simultaneously the algebraic equations, 

A . AA' A AA' 
(2.5.5) C01 = i x  r f lA  , co 2 = i x  ~ 2 A '  

Assuming that ZIA' is not proportional to Z2A' , the unique solution to these 

equations is given by the formula 

AA' A A' A A' A' 
(2.5.6) ix = (~i~2 -~2~i )/(~IA,~2 ) , 

as can readily be checked. 

In manifestly twistorial terms the solution for the intersection point can be 

represented by the skew product of the two twistors. In particular, if we put 

(2.5.7) x~B d ~ 7~ B ~ ~I 
: (ZIZ2-~ZI)/(ZIZ 2 d~ ) 

where a normalization factor has been included so as to ensure that Xd~Id~ 

then one finds 

(2.5.8) X d@ 

=2, 

for the spinor parts of X d@ , after a short calculation. 

1 dAB . A ] 
-~ XdX e ix B' 

L-ixA 'B SA'B'J 
AA' 

Thus a spacetime point x 

is represented in twistor terms by a simple skew-symmetric twistor x ~ (recall 

that "simple" here means that X[~@X ~]~ = O) satisfying the normalization condition 

X~@I @ = 2 , where Id~ is the infinity twistor defined in (2.3.6). 

The dual description of the same spacetime point is formed by taking Xd@ = 

1 ~d@y6XT~ . The complex conjugate spacetime point ~a is described dually by the 
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complex conjugate twistor x~ • The condition that a spacetime point should be real 

is that the dual twistor should be equal to the complex conjugate twister, i.e. 

x~ = x a B  . 

If X ~ and Y~ represent, according to the description given above, the space- 

a 
time points x a and y , respectively, then the quantity 

(2.5.9) -X~Y ~ = (xa-ya) (Xa-Ya) 

a 
is the norm of the spacetime separation of the two points. In particular, if x = 

a a a a 
v -iw where v and w are real, then 

i xaB~a 6 a (2.5.10) ~ = WaW 

is the norm of the imaginary part of x a , which is a Poincar~ invariant quantity. 

That region of complex Minkowski space (CM) for which w a is timelike and 

future-pointing will be called (notwithstanding some apparently unavoidable termin- 

ological awkwardness) the future - tube, and will be denoted CM +. The region for 

which w a is timelike and past-pointing will be denoted CM-. 

2.6 Projective Twistor Space. 

An ~-plane does not determine a twistor uniquely, but rather, as should be 

evident from equation (2.5.1), only up to an overall scale factor. An equivalence 

class of twistors all of which are proportional to each other is called a projective 

twistor, and by projective twistor space (PT) we mean the set of all such equivalence 

classes. 

It is clear that projectively a twistor does not have a well-defined norm. 

Nevertheless, projectively the sign of the norm still makes sense, and thus PT can 

be divided into three parts denoted PT +, PN, and PT- according as to whether the 

norm Z~Z is positive, zero, or negative. 

Often we will use the twistor coordinates Z ~ to denote the associated equivalence 

class in projective twistor space. In that case we refer to the components of Z a as 

the homogeneous coordinates for the corresponding point in PT. The systematic use of 

homogeneous coordinates has the marvelous catalytic effect of simplifying much of the 
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calculational work that crops up in algebraic geometry. 

A point W in dual projective twistor space corresponds to a plane in PT. The 

plane consists of all those twistors Z d that satisfy W Z d = 0. Note that the equa- 

tion for the plane is completely scale invariant. 

and The skew product Z[~'~]I m2 between a pair of projective twistors Z 1 Z 2 corres- 

ponds to the complex projective line (pl) which joints them. Thus, lines in PT 

A' A' 
correspond to points in complex Minkowski space. If Z1 is not proportional to z2 

~[~] 
then we can normalize ml m2 so as to obtain the convenient representation of space- 

A' 
time points given by equations (2.5.7) and (2.5.8). (If z1 is, in fact, propor- 

A' 
tional to Z2 then the skew product .[d.b] represents a point at infinity.) 

' ~i ~2 

The representation of lines in PT (i.e. points in CM) by simple skew-symmetric 

twistors - these being the "Plucker coordinates" for the lines - allows us to derive 

a number of interesting results concerning the geometry of PT, several of which will 

be mentioned here: 

2.6.1 Proposition. The intersection in PT of the line X ~8 and the plane W is 

represented by the twistor W X ~ 

Proof. One must show that the twistor W X ~ lies both on the line X ~ and the 

plane W~ . Clearly the latter holds, since (W X~8)W~ = 0. Now a twistor Z ~ lies 

on the line X d~ if and only if Z[~X 7@] = 0. It follows therefore, from the quadra- 

tic p-relations Xd[SX Y@] = 0 (i.e. the simplicity conditions) by contraction with W , 

that W X ~ lies on X ~ . [] 

2.6.2 Proposition. 

Z[~X ~Y] = 0 implies ZdZ 

The line X d~ lies entirely within PT + (that is to say, 

0) if and only if the inequality 

(2.6.3) (W X ~) (WY~) > 0 

holds for every choice of a plane W 

Proof. By Proposition (2.6.1) above, W X ~ represents the intersection of the 

p l a n e  W a n d  t h e  l i n e  X ~ . C l e a r l y ,  t h e  l i n e  X ~ l i e s  e n t i r e l y  w i t h i n  PT + i f  a n d  

only if its intersection with any plane lies in PT +, which is precisely what (2.6.3) 

asserts.[] 



15 

2.6.4 Proposition. Lines which lie entirely within PT + (the "top half" of 

projective twistor space) correspond to points in CM + (the future- tube). 

Proof. The twistor Z ~ lies on the line X ~ if and only if it is of the form 

AA v a a 
Z ~ = (ix ~A' , ZA,) for some choice of ZA' " Writing x a = v-iw , a short calcu- 

lation establishes that 

A~ w - 
(2.6.5) Z~Z a = 2w ~A~A, 

~AZA , future-pointing, > 0 for all Now since is null and it follows that Z~Z 
%A' 

if and only if w a is timelike and future-pointing. [] 

--+ + 
Similarly, lines lying in PT = PT UPN correspond to points in the "closed" 

future tube CM . Lines in PT correspond to points in CM . Lines which intersect 

all three of PT +, PN, and PT- correspond to points for which w a is spacelike. Real 

Minkowski space points correspond to lines in the hypersurface PN. For further dis- 

cussion see Penrose 1967, section VI. 

Chapter 2, Notes. 

i. We require here various spinor identities, including the following: 

• = 

-iSabcd CACSBDCA,B, SC, D , SABSCDSA,C ,6B, D , 

A AB , A A' A'B' A' 

= £ WB ~B = w £AB , Z = S ZB' ' ZB' = Z SA'B' 

AB BA ~.[ABsC]D A'B' B'A' 
S = - S  , S = 0 , C = - £  

See, for example, Pirani (1965), section 3, and Penrose (1968a) for standard exposi- 

tions of spinor algebra. Proposition 2.1.2 appears in Penrose and MacCallum (1972), 

section 1.3. 

2. For treatments of the global geometry of compactified Minkowski space, see Penrose 

(1963), Penrose ~1965b) and, especially, Penrose (1965a). A somewhat more stream- 

lined treatment is outlined in Penrose (1968a). Also see the account given in Hawking 

and Ellis (1973). 

3. See Penrose (1967), section V. 



CHAPTER 3 

MASSIVE SYSTEMS AND THEIR INTERNAL SYMMETRIES 

3 .i Momentum and Angular Momentum. 

A massive system, like a massless system, is characterized by its total momen- 

tum and its total angular momentum. Unlike the case for a massless system, however, 

for a massive system it is not required that pa and M ab be related to one another 

directly in any special way. All that is required is that the momentum be timelike 

and future-pointing, and that the angular momentum behave appropriately under trans- 

lations. 

The angular momentum can be expressed in the form 

(3.1.1) Mab AB A'B' ~A'B' AB =~ ~ + 

AB 
where ~ is a symmetric spinor. Under a change of origin in complex Minkowski space 

the angular momentum is taken to transform as follows: 

AB AB ~(A B)B' 
(3.1.2) 

---~ ~ - ~ B,q 

AA' 
where q is defined to be the position vector of the new origin with respect to 

the old. The complex center of mass(1) of the system is the set of all points in CM 

about which the angular momentum vanishes. It is, accordingly, given by those points 

AA' 
x which satisfy 

(3.1.3) AB = p(A xB)B ' 
B' 

The general solution to equation (3.1.3) is 

(3.1.4) x~A' -2 AB A' AA' 
= 2m D PB + IP 

where m is the mass, and I is an arbitrary complex number. The following result is 

illustrative of the significance of the complex center of mass: 

3.1.5 Proposition. The spin-vector of a massive system is a measure of the 

system's displacement transverse to the momentum into the complex. 
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Proof. 

. AB A'B' -±~ 

The spin-vector is defined, as usual, by S a = *Mabp b. Writing *M ab = 

+ i~A'B'8 AB one obtains 

' . AB A' .-A'B'pA 
(3.1.6) S AA = -l~ PB + ±~ B' 

Combining (3.1.4) and (3.1.6) it follows directly that 

(3.1.7) x a a i(<pa m-2sa) = V + + , 

where v a = ~(xl a + ~ )a and < = -i}(l - ~). Thus m-2S a is the transverse displacement 

of the center of mass into the complex. ~ 

The complex center of mass will be discussed at greater length in Section 3.5 , 

where an expression in explicit twistor terms will be derived for it. 

3.2 The Kinematical Twistor. 

The momentum and angular momentum of any system, massive or massless, can be 

expressed in terms of a certain type of symmetric twistor of valence [~] called the 

system's kinematical twistor. It is defined as follows: 

(3.2.1) A ~ 

AA' AB 
where P is the momentum, and ~ is the angular momentum spinor. A necessary and 

sufficient condition for a symmetric twistor A ~ to be of the form (3.2.1) is that 

(3.2.2) 

where A~ 

A~I~y = A~yI ~ , 

is the complex conjugate of A ~ , given in the spinor parts by 

I O , B' 1 
PA 

(3.2.3) A ~ = 

pA 2i~A'B' 
B 

For a massive system we require that pa be timelike and future pointing. This means 

A~I~ W W ~ must be greater than zero for any choice of W~ For a massless that 

= ~A~A , = . - 
system, on the other hand, we require that PAA' and ~AB IW(AZB) for some 
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choice of Z ~ = ( A , ZA,) . In fact, a kinematical twistor describes a massless 

system if and only if there exists a twistor Z ~ such that 

(3.2.4) A ~ = 2Z(~I ~)Y~' y ' 

which is equivalent to conditions (2.1.3) and (2.1.4). 

3.3 The Decomposition of Massive Systems into Massless Subsystems. 

A very curious fact about massive systems is that they ean always be regarded as 

being composed out of a set of two or more massless subsystems. These massless sub- 

systems are the "twistor constituents" of the associated massive system. 

3.3.1 Theorem. For any integer n > i, given a massive system with momentum pa 

AB 
and angular momentum one can find a set of n ZP~ systems Z~ (i = 1 .... ,n) such l 

that 

(3.3.2) pa = ~ pa ~AB AB 
l ' = Z Pi. ' 

i 1 

where P91 and ~ label the momenta and angular momenta of the various ZRM systems 

d e s c r i b e d  by Z . .  
l 

Proof. F i r s t ,  i t  w i l l  be  d e m o n s t r a t e d  how a m a s s i v e  s y s t e m  {pa , BAB} can  be  

decomposed into a pair of ZRM systems. 

Let ~a be any unit spacelike vector (~a ~a = -i) orthogonal to pa. Put: 

a (pa + m~a)/2 , a (pa m~a)/2 (3.3.3) P1 = P2 = - 

It follows immediately that both of the momenta P9 (with i = i, 2) are null, and 
i 

thus that 

a -1A A' a -2A A' 
(3.3.4) P1 = ~ ~i ' P2 = ~ ~2 

A' A' 
for some choice of ~i and ~2 (We have written -iA for the complex conjugate of 

A' form for A and ~B ~i ") Now ~AB ' being symmetric, must be of the ~(A~B) some . 

-2B 
Expanding ~B in the spinor basis generated by -IB and ~ , one obtains 

(3.3.5) ~B = @i IB- + @2~2B 
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for some choice of 81 and 82 . And then we have: 

(3.3.6) uAB = 81 ~(A~B)I + 82 ~(A~B)2 

Thus equations (3.3.2) hold with pa given as in (3.3.4) and with 
' i 

(3.3.7) U? = 8ie(AgB)i • ~? = 82~(AgB)2 

(81 ~A Our two ZRM systems are accordingly then given by Z 1 = , ZIA,) and Z 2 = 

A 
(82~ , Z2A,)- 

To decompose a massive system into three twistors, take a pair ~a , D a of unit 

mutually orthogonal vectors lying in the 3-space orthogonal to the momentum and form 

the three null momenta p.a g i v e n  by(2)  : 1 

(3.3.8) 

a = (pa + m a {3m a 
PI ~ + ~-~ )/3 

a = (pa + m a ~ 
P2 2"~ - Da)/3 

a 

P3 = (p2 _ m ~a)/3 

a -IA A' a -2A A' a -3A A' 
of which pa is obviously the sum. Put P1 = ~ Z1 ' P2 = ~ 72 , and P3 = Z Z3 

AB = (A~B) one for an appropriate triplet of spinors ZA'i Writing, as before, 

can clearly put ~B = [e.~Bi for some choice of @.. Hence, defining 
• 1 1 
l 

(3.3.9) ~B = @i (A~B)I , etc. 

we see that equations (3.3.2) are satisfied, as desired. 

then defined by 

The three twistors Z~ are 
1 

(3.3.10) Z ~ = , i (0i ~A WiA ') 

This method can by iteration be extended to decompose a massive system into 

any number of twistors, as follows: Having split the massive system into three null 

subsystems, one now recombines two of the null subsystems to form a massive sub- 

system of the original system. Then that massive subsystem can be split into three 

null subsystems, giving us a splitting of the original system new into four null 

subsystems. This process can be repeated over and over until the desired number of 
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null subsystems is achieved.~] 

Suppose that a massive system A c~ has been decomposed into a collection of 

massless subsystems denoted A~. $ where i = i, ..., n. On account of the linearity of 
1 

the kinematical twistor in momentum and angular momentum it follows that Ad$ = 

~A. ~. Each massless subsystem is described by a twistor Z? for some value of the 
i i m 

index i. The corresponding complex conjugate twistors will be denoted Z i , raising 

the index i. It is useful to treat these indices according to the usual rules of 

tensor algebra, adopting the summation convention, and so forth. 

(3) 
kinematical twistor of the complete massive system one has : 

Then for the 

where now the contributions from all the various ZRM subsystems are automatically 

summed over. 

3.4 Internal Symmetries. 

Expression (3.3.11) can be regarded as the natural starting point for the de- 

velopment of the twistor approach to elementary particle physics. It shows how the 

momentum and angular momentum of a massive system can be built up out of a set of 

twistor constituents. According to Theorem (3.3.1) there will exist, for any kine- 

matical twistor A ~$, a set of twistor constituents Z ~ such that A d~ is given by ex- 
i 

pression (3.3.11). 

An important point to notice is that a massive system A ~ does not determine a 

unique set of twistor constituents. Linear transformations of the form 

(3.4.1) 

~j=8 + -~8~J 
Z i + R~i~ j ~ija$ 

{i ÷ ~$i~j ~ijz~ 
ej $ + ~ j 

can be made such that--when RBi and 13 are suitably restricted--the kinematical 

twistor A ~B , as given in equation (3.3.11), is left invariant. 

A I 
3.4.2 Theorem. Linear transformations acting on z. 

l 

A'-i 
momentum z. ~ are of the form: 

i A 

m7 
and z~ that preserve the 

A 
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A' j A' -iA -1-" " (3.4.3) ~, --~ ~.~. 7 --÷ u_~ jA 
i i ] 3 

j -k @k). 
where U~I i s  u n i t a r y  ( i . e .  UiU j = ] 

n l 
Proof. It should be evident that if the momentum is to be preserved then zi 

A -iA' 
when transformed, must pick up no terms involving ~. or ~ The most general 

1 

linear transformation satisfying this condition, whilst maintaining the conjugacy 

A' ~iA 
relations between 7. and is given by 

l 

(3.4.4) 

A' _A'j B' ' 'B . .~A ~j 
l i<iB , 7j -ijB 

-iA zAi:jB -ijA B ' 

Under this transformation the momentum transforms as follows: 

A'-iA 
(3.4.5) ~, 

1 
--÷ (RA' j -Ai A' -ijA B'~kC 

i B'-~C + SikcSB' )Tj 

+ (RA'J -ikA B' C' .-Ai A' .-jB-kC 
i B'Sc ' )Tj 7 k + (RjBSikC)Z 7 

In order for the momentum to be preserved, only the first of the three terms appear- 

ing on the right of (3.4,5) must survive, and the other two must vanish. Assuming 

that only the first term survives, then what is required is that 

A'-iA 
(3.4.6) 7. 

1 
nv .. 'j -Ai S., ~A) B'-kC 

= ( B'~C + ~' ~ iKC ~ j 

A ' A' 
for all values of 77 This must, in particular, be true when 7. 

1 1 
is of the fol- 

lowing degenerate form, suggested by the "Segre embedding" (cf. Mumford 1976, section 

2B): 

n I A T 

(3.4.7) Zi = Z qi ' 

A t 
for some value of 7 and qi " Substituting (3.4.7) into (3.4.6) we then obtain 

(3.4.8) qiqi7 A'-A7 = R.A'-AiR + siA'-Ais 
i 

' A' 
where R~ and S i are defined by 

A' = R A'J B' ~Ai -Ai-B-j 
(3.4.9) Ri i B 'z qj ' = RjB7 q ' 
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(3.4.10) S~' A' -B-j {Ai -ijA B' 
= SijB ~ q , = SB, ~ qj 

Now note that (3.4.8) is, on the left-hand side, a future-pointing null vector, 

whereas on the right-hand side is a sum of future-pointing null vectors. It follows 

that each of these null vectors must be proportional (with a positive or zero factor 

A'-A 
of proportionality) to ~ ~ This will be the case only if we have 

(3.4.11) R. = ~ r. , = , 

(3.4.12) sA' = ~ s. , = ' 
1 l 

A ! 
for all values of ~ , with appropriate choices of r. and s.. Equation (3.4.12), 

1 1 
A' 

however, is incompatible with equation (3.4.10) unless s i vanishes; thus Sii B 

A I _ _ Av 
vanishes--since S~ will vanish for all values of H A and qk only if Sij B itself is 

zero. One can infer now, moreover, that the last two terms in (3.4.5) are zero, as 

desired. Equations (3.4.8), (3.4.9), and (3.4.11) taken in conjunction then give 

A'j A'uJ 
(3.4.13) Ri B '=£B' l ' 

with U~ unitary.[] 
l 

3.4.14 Theorem. Linear transformations acting on Z~ and ~i that preserve 

A'-iA 
the momentum ~. ~ and the angular momentum i~!A~ B)j and also preserve the conjugacy 

l ] 

relations between Z ~ ~i i and ~ , are of the form 

• ! 

A' 3 A 
(3.4.15) ~. --÷ U.~. , 

l I 3 

(3.4.16) ~0 A ~ U~(~0A + A'k~kA)3 ' 

together with the corresponding complex conjugate transformations, U~ being an 
l 

arbitrary unitary matrix, and Ajk being an arbitrary skew-symmetric matrix. In mani- 

fest twister terms these transformations are given by 

j ~ ~ -k 
(3.4.17) Z~ --÷ Ui(Z j + I AjkZ 8) , 

together with its complex conjugate; the set of all such transformations forms: a 

group. 



23 

Proof (4) . From Theorem 3.4.2 we know already that (3.4.15) is the most general 

A' 
t r a n s f o r m a t i o n  a c t i n g  on  g .  t h a t  p r e s e r v e s  t h e  momentum.  I t  s h o u l d  b e  e v i d e n t  

1 

that a transformation acting on ~ that preserves w(A~ B) i .  must only contain terms ± 

linear in ~ and ~Bi -i A' , and must c o n t a i n  no  t e r m s  i n v o l v i n g  ~A '  o r  7.1 T h e r e f o r e ,  

transformations of the form 

-Bi -i-' 
are considered. Transformation (3.4.18), taken in conjunction with ~ --÷ UTZ B3 , 

] 

gives 

(A-B)i -iRJ(A-B)k C 9k(A B) ~izjC 
(3.4.19) ~ i Z --+ Uk i C n ~j + SijC k H 

AB Aj and S.. Thus, for the preservation of the angular momentum we require that RiB 
13 

satisfy the following relations: 

(A-B)i -iRJ(A-B)k C (3.4.20) ~ .z = , l Uk i C Z ~j 

(3.4.21) ~k(A B) :i-jC 
S i jCUk z = 0 , 

A' for all values of ~ and ~iA In particular, putting Z~ = l l qi ' these require- 

ments become: 

~i~(A~B) -k-i j (A-B) C 
(3.4.22) 1 = q UkRic ~ ~j ' 

-j-kz(A_B) zinC 
(3.4.23) q q ~ bijCUk ~ = 0 

Equation (3.4.22) with no further ado implies 

jA = U~£BA (3.4.24) RiB 

Equation (3.4.23) implies, with a bit of algebra, 

AB -i 
(3.4.25) Si( -'Uk)3 = 0 , 

which, when substituted back into (3.4.21), gives, after a short calculation: 

A k A 
(3.4.26) Sij B = UiAkj~ B , 
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with A.. skew-symmetric. Substituting (3.4.26) and (3.4.24) into (3.4.18), we ob- 
13 

tain (3.4.16), as desired. The proof that (3.4.15) and (3.4.16) are equivalent to 

(3.4.17) is quite routine, and can be left to the reader. To prove that transfor- 

mations of the form (3.4.17) form a group is straightforward. One must show that 

if gl = (UI ' AI) is one such transformations, and g2 = (U2 ' A2) is another, then 

their composition g2g I is yet another element g3 = (U3 ' A3)" Indeed, one finds 

(U 3 , A 3) = (U2U 1 , AI+UIA2UI). Moreover, one finds g = (U , A) always has a unique 

inverse--namely: g-i = (U,-UAU). [] 

Those transformations for which A = 0 form a subgroup, referred to as the 

"unitary" part of the internal symmetry group. Transformations for whieh A ~ 0 are 

called "inhomogeneous transformations". We shall refer to the subgroup of trans- 

formations for which U~ = 6~ as the group of "restricted" inhomogeneous transforma- 
1 l 

tions. It is a tenet of the so-called twistor particle hypothesis that these n- 

twistor internal symmetry groups are closely related to the various phenomenological 

symmetries that arise in the course of the investigation of elementary particles and 

their interactions (cf. Penrose, 1977). 

3.5 The Center of Mass Twistor. 

In connection with the description of a massive system A ~ in terms of a set of 

twistor constituents Z~ it is useful to introduce the quantities 
l 

( 3 . 5 . 1 )  M i j  , , 

called partial mass tensors. The name derives from the validity of the formula 

(3.5.2) m 2 = M..M ij , 
l] 

which expresses the squared mass of the system in terms of these tensors. 

Now consider the skew-symmetric twistor R ~ defined by 

(3.5.3) R ~ = 2m-2Z~Z~M jk 

Using (3.5.1) and (3.5.2) it is straightforward to verify that R ~ satisfies the 

normalization condition 
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R~BIB = 2 (3.5.4) 

Moreover, we can easily see that R ~8 is simple, for equation (3.5.3) can be re- 

written in the form 

(3.5.5) R ~ = 2m-2ydy ~A , 
A 

where Y~ is defined by: 
A 

(3.5.6) Y~ = ~-J A zs~ 

Equation (3.5.5) confirms that R ~ is indeed the skew product of a pair of twistors 

of valence one. 

Since R ~ is simple and satisfies equation (3.5.4), it represents--according to 

the description elaborated in Section 2.5--a point in complex Minkowski space. In 

fact, we have the following result: 

3.5.7 Theorem. The twistor R ~ represents a point on the system's complex 

center of mass. Moreover, by subjecting Z ~ to inhomogeneous transformations, the 
i 

point corresponding to R ~ can be translated so as to range over the entirety of the 

system's center of mass. 

Proof. W~ shall write (cf. equation 2.5.8): 

(3.5.8) R ~ = 

for the spinor parts of R ~ . 

(3.5.9) iR A = 
B' 

- iRA'B EA'B' 

Then using definition (3.5.3 

2 -2 A ,~ij 
m WiTjB 

-2 A -i-jB 
= 2m 60i~jB,~B~ 

-2 (A-B)i-j [A-B] 
= -zm ~ i ~ ~B~jB , -2m-2~ i v 

-2 AB _ i~0PA ' = 2im ~ PBB ' 

we have : 

l-j 
~B~jB, 
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where AB = i~(A~B)j , and 10 
3 

is given by the formula: 

-2 A-i 
(3.5.10) 10 = -im ~i~A 

Comparing (3.5.9) with (3.1.4) we see that R AA' is indeed on the complex center of 

mass of the Z~ system. 
l 

Inspection of (3.5.3) makes it evident that R ~ is invariant under unitary 

transformations acting on Z.. It is not, however, invariant under restricted in- 
1 

homogenous transformations. In fact, it may not be entirely obvious that R ~8 re- 

mains simple when it is subjected to a transformation of the form 

(3.5.11) Z. ~ --+ Z~ + I(~BA..zJ 
l l 13 

To verify that ~ does indeed remain simple under (3.5.11) note that Y~ defined 
' B' 

in equation (3.5.6), undergoes the transformation 

(3.5.12) 

where I ~ = (~A B 
B 

y~ ÷ ~ ~ y~ 1 i~B~iJAij 
B -- B ' B := B-~ ' 

, 0). And thus R ~ transforms according to the formula 

--÷ 2m YA Y 

from which it is clear that R d~ remains simple. 

Having verified that R ~ remains a point, it suffices to examine the expression 

for R AA' now, in order to see how R AA' behaves under an inhomogeneous transforma- 

tion. The last line of (3.5.9) shows us that 10 is the only quantity apt to alter 

under the effects of (3.5.11). And using (3.5.10) we deduce that l0 transforms as 

follows: 

(3.5.14) l 0 ----+ 10 + I , I := im-2MiJAij 

By an appropriate choice of A. (e.g.A.. = -ilM..) one can then translate R ~ to 
i] i] i] 

any point on the complex center of mass of the system.[] 

If all n of a set of twistors Z~ happen to pass through the same spacetime 
i 

point x AA' , then that spacetime point, as one might justifiably suspect, lies on 

the center of mass of the system. In order to formalize this observation it is use- 
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ful to introduce an operator Px defined by 

(3.5.15) px ze = -X~I~yZ Y , 

where X ~ corresponds--according to equation (2.5.8)Jto the spacetime point x AA' 

AA' 
We call Px the "restriction operator" for the spacetime point x Note that 

equation (3.5.15) can alternatively be written in the form 

x~B ' (3.5.16) Px z = ~B' 

and also that we have 

(3.5.17) 

x~B' (ixAB ' B' 
' = ' ~A' ) ' 

AA | 
(ix ~A' ~A ') px Z = , • 

showing that x AA' 

3.5.18 

(3.5.19) 

Proof. 

be directly verified as follows. 

straightforward to deduce, using (2.5.8), that 

(3.5.20) X ~ = X ~ X ~B' 
B' 

Then we have: 

(3.5.21) 

does indeed lie in the ~-plane determined by the twistor Qx Z~ . 

Proposition. The center of mass twistor R ~ satisfies the relation: 

p R ~ = X ~ 
x 

This result should, in fact, be clear on geometrical grounds. It can 

Let X ~B' be defined as in (3.5.16). It is 

where we have used (3.5.16) and (3.5.2). [] 

-2 ~ ~-jk 
Qx R~ = 2m PxZjZkM 

-gk 
= 2m-2xaA'x~B'~A,j~B,kM 

-2xaA'x~B' M -jk 
= m ~A'B' jk M 

= X ~8 
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Chapter 3, Notes. 

i. See Newman and Winicour (1974), Tod and Perjes (1977), Tod (1975), and Tod (1977). 

2. Cf. Feynman, Kislinger, and Ravndal (1971), particularly their formula 4a. 

3. See Penrose and MacCallum (1972), p. 308--where formula (3.3.11) first appears~ 

for further discussion. 

4. This result has a long and interesting history, to which many individuals-- 

Penrose, Perjes, Sparling, Hodges, and Tod, to name a few--have cQntributed. The 

twistor internal symmetry groups were being discussed extensively as early as the 

Spring of 1973--although they were not being called "internal symmetry groups" yet, 

at that time--in seminars at Birkbeck College, London. Theorem 3.4.14 was conjec- 

tured during that period--and believed by most of us to be valid--although rigorous 

justification was not forthcoming until 1977 by Penrose and Sparling (for the case 

of infinitesimal transformations) and 1978 by Sparling (for the general case). 

Early references to the twistor internal symmetry groups include Penrose (1975a), 

pp. 328-329; Penrose (1975b); and Perj~s (1975). 



CHAPTER 4 

TWISTOR QUANTIZATION: ZERO REST MASS FIELDS 

4.1 What is Twister Quantization? 

Populated as it is with all its curious symbols, enigmatic diagrams, and 

bizarre hieroglyphs, it is no wonder that the literature of twister theory continues 

to confound and baffle the outside world--and it is no wonder that the mysterious 

and cultish procedure of "twister quantization" remains, in the eyes of the masses, 

a kind of cryptic rite, to be performed in the dead of night, surrounded by the 

exotic paraphenalia of algebraic geometry, sheaf cohomology, and intuitionistic 

logic. 

More seriously, what we mean by twister quantization is a set of rules ac ~ 

cording to which the variables of classical twister geometry are systematically re- 

placed by certain operators, out of which one constructs quantum mechanical ob- 

servables acting on an associated Hilbert space, the elements of which are inter- 

preted as particle states. 

For the sake of clarity, it should be emphasized that twister quantization is, 

at least as presently formulated, a "first quantization" technique: that is to say, 

it allows for the passage from an essentially classical and finite dimensional pic ~ 

ture to the elementary quantum mechanics of single particle systems. In twister 

terms particle states are represented in terms of classes of holomorphic functions 

defined over certain domains of twister space and products of twister spaces. 

Physical observables are represented by holomorphic differential operators acting 

on these functions. It is our hypothesis that all elementary particle states can 

be described in this way: thus, through the examination of the complex analytic 

geometry of twister space a classification scheme for particles emerges. 

4.2 The Helicity Operator. 

Within the purely classical aspect of twister theory, as outlined in the pre- 

vious two chapters, twisters and their complex conjugates are treated on more or less 

an equal footing. The passage to the quantum theory is achieved with the elimina- 
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tion of the Z variables: wherever the complex conjugate variable Z occurs, it is 

replaced by the holomorphic differential operator Z = -~/~Z ~ . It should be 

stressed that thereis no single definitive reason for introducing the substitution 

Z --+ Z There are, however, many different indications from many different 

viewpoints that lead, ultimately, to the conclusion that this is the correct 

way to proceed for quantization. 

As described in Section 2.1, the classical expression for the helicty of a 

ZRM system is 

(4.2.1) 1 + E z ~) s = 7 (z~E 

Note that the expression for the helicity has been symmetrized in its dependence on 

Z ~ and Z , as is usually done--at this stage of the analsyis no "factor ordering" 

problems ever arise--in the preparation of a classical dynamical variable for 

quantization. When the quantization rule 

(4.2.2) Z ----+ Z (= -~/~Z ~) 

is brought into effect, we find that the commutation relations 

^ 
(4.2.3) [Z ~ , g~] = ~ 

^ 
imply that the helicity operator S should be given by 

^ = 1 ~ - 1 s ~ z~ , (4.2.4) 

or, equivalently, by 

(4.2.5) -2s-2 = Z~/$Z ~ 

One minor question. We have an operator: but what on earth does it act on? When 

we started off s was a classical dynamical observable for a classical system of zero 

rest mass. Upon quantization we obtain an operator s which is to be interpreted as 

a quantum mechanical observable acting on zero rest mass quantum mechanical systems} 

thus, the functions upon which s operates are to be interpreted as zero rest mass 

particle states. 
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The helicity operator depends only upon the variable Z ~. It is consistent 

with this fact and with the general principles of twister quantization to choose 

the states on which s acts to be holomorphic functions, defined over some domain 

of twister space. (We shall return shortly to the question of what sort of domain 

should, in fact, be taken--this being, in reality, a rather involved and intricate 

question.) Now in equation (4.2.5) one observes the appearance of the Euler 

homogeneity operator Z~/~Z ~ . Thus, according to formula (4.2.5), in order to 

describe a ZRM field of helicity s (where s now denotes the eigenvalue of the 

operator s) we should use a holomorphic function f(Z~), homogeneous of degree -2s-2 

in Z d , i.e. satisfying 

(4.2.6) f(IZ ~) = l-2s-2f(Z~) 

And indeed it emerges that in terms of such twister functions one can give a com- 

plete and compelling description of massless fields--at least insofar as we confine 

out interests to analytic free fields defined on suitable domains of complex 

Minkowski space. 

4.3 Positive Helieity Fields. 

By a zero rest mass free field one means a solution to one of the following 

three equations(l): 

AA' 
(4.3.1) V @A'B'...C' = 0 , 

(4.3.2) []@ = 0 , 

(4.3 3) V A'A 
" ~ A B . . . C  = 0 

We are primarily interested in positive frequency fields that furthermore exhibit 

the property of being analytic throughout the closure of the forward tube of 

a ~+ 
complex Minkowski space--the "closed" forward tube being defined by: X s CM iff 

a 
x = va-iw a with w a timelike future-pointing, null future-pointing, or zero (2) In 

the event that positive frequency fields are under consideration equations (4.3.1), 

(4.3.2), and (4.3.3) describe, respectively, fields of positive, zero, and negative 

helicity--for negative frequency fields (i.e., fields analytic throughout CM-) the 
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helicities are reversed. In each case, the spin is equal to one-half the number of 

spinor indices appearing on the field (the fields being assumed to be symmetric in 

all their indices). 

Now we consider the problem of finding solutions of (4.3.1). In this connection 

it is useful to recall the notation introduced towards the end of Section 3.5, ex- 

pressed in equation (3.5.17). For the r~striction of a holomorphic function to the 

AA T 
region of twistor space corresponding to a spacetime point x we write 

AA w 
(4.3.4) pxf(Z ~) = f(px Z~) = f(ix ~A' ' ~A ') 

Px f (Z ~) AA' Thus is to be regarded as a function of x and ~A' " Equation (4.3.1) can 

be solved by means of the following contour integral formula: 

( 4 . 3 . 5 )  ~ A ' B ' . . . C '  = pxrrA g B , . . . ~ c , f ( Z  )Art , 

where  t h e  d i f f e r e n t i a l  fo rm h'rr i s  d e f i n e d  by 

( 4 . 3 . 6 )  A~I = ~rN,d~A' 

The twistor function is taken--in aecordance with the discussion of the helicity 

operator in the previous section--to be homogeneous of degree -,2s-2, where the number 

of spinor indices appearing on @A'B'...C' is 2s. Since AT is homogeneous of degree 

2 in 7[ it follows that the expression under the integral sign in (4.3.5) is--in 
A' 

its entirety--homogeneous of degree zero. The idea now is that the ~-dependence is 

AA' 
integrated away, leaving behind a field that depends upon x above. 

. . (3) 
4.3.7 Proposlzlon . The field @A'B'...C' defined in (4.3.5) automatically 

satisfies the ZRM equation (4.3.1). 

First we require the following formula, based on the differential chain Proof. 

rule: 

(4.3.8) qAA,Oxf(Z ~) = VAA,f(ixBB'~B, , ~B,) 

= -i (VAA ,x BB' ~B' ) Px~B f (Z~) 

B' 
= -iCABEA , WB,Qx~Bf(Za) 



33 

= -±PxZA,~Af(Ze) , 

where, compatible with the identification Z = -~/~Z d , we have put ~A = _~/~ A. 

Differentiating (4.3.5) and using (4.3.8), one finds that (4.3.1) follows immediately 

A' 
(on account of the trivial identity z ZA' = 0). U J 

It should not come as a surprise that, when acting on twistor functions, the 

following identity is valid: 

(4.3.9) iVAA,P x = PxPAA , , 

where PAA' = ~AZA ' is the momentum operator, obtainable from formula (2.1.3) by 

the application of twistor quantization, i.e. by means of the substitution 

(4.3.10) ~A --÷ ~i (= -~/~wA) 

Indeed, if the momentum and angular momentum appearing in equations (2.1.3) and 

(2.1.4) are quantized by means of (4.3.10) together with 

-A' ^A' 
(4.3.11) ~ ~ ~ (= -~/~A,) F 

then the resulting operators ~a and ~ab satisfy the commutation relations 

[~a , ~b] : 0 , [~a , ~bc] : _2iga[b~c] , 

(4.3.12) 
[~ab ^cd ~ ~  , M ] = 2inC[agb]d-2imd[ag b]e 

which are the correc~ quantum mechanical commutation relations for momentum and 

angular momentum operators--i.e, they exhibit the correct commutation relations for 

the generators of the Lie algebra of the Poincare group. 

Summing up: A twistor function f(Z ~) represents--with some "gauge freedom" 

(i.e. cohomological coboundary freedom) corresponding to adding onto f(Z d) any 

function which integrates to zero with respect to the contour chosen in equation 

(4.3.5), irrelevant as far as the present discussion is concerned, although ulti- 

mately of considerable significance the quantum mechanical wave function of a zero 

rest mass particle; the state--assuming positive frequency (cf. Section 4.5)--has 

helicity s if the twistor function is homogeneous of degree -2s-2 (the negative 
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helieity case will be treated in the next section); a contour integral formula can 

be employed to relate the twistor function description of the state to the more 

conventional spacetime field description. 

4.4 Negative Helicity Fields. 

For a number of years various aspects of twistor theory were hampered in their 

development on account of the fact that although twistor functions f(Z ~) could be 

used to generate positive frequency positive helicity solutions of the ZRM equations, 

it was not known how to use such functions in order to generate positive frequency 

negative helicity solutions: in Penrose and MacCallum (1972), for example, one finds 

on p. 261 the remark : "... it turns out that spinor fields with unprimed indices, 

whose positive energy parts represent left-handed particles, must be represented by 

functions on the dual twistor space, while spinors with primed indices, whose posi- 

tive energy parts represent right-handed particles will be represented by functions 

on the twistor space." Thus it seemed that positive helicity fields were to be 

described by functions f(Z d) with homogeneity lesser than or equal to -2, while 

negative helicity fields were to be described by functions g(W ), again with homo- 

geneity lesser than or equal to -2, on dual twistor space. The twistor functions 

with homogeneity greater than -2 were apparently to be ignored and discarded--in 

fact, they were instead relegated to a rather curious and mysterious status, and 

were called "active" twistor functions (as opposed to the other ones, which were 

called "passive") on account of the prominent role they played in the description of 

certain types of scattering processes [cf. Penrose and MacCallum (1972), p. 277]. 

This state of affairs, despite the fact that it generated an enormous amount of good 

conversation and interesting philosophy, was unsatisfactory in some respects. 

However, the matter was resolved in 1973 when a "direct" method (i.e., a 

contour integral formula) was formulated for extracting the field information of 

"active" twistor functions. The correct expression is given by 

(4.4.1) ~AB...C :/0X~A~B "'" ~C f(z~IA~ ' 

where f(Z ~) is homogeneous of degree -2s-2, with s negative, the operator 
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~A (= _~/~ A) appearing -2s times in the integrand. 

4.4.2 Proposition. The field @AB...C defined in (4.4.1) automatically satisfies 

the ZRM equation (4.3.3). 

Proof. Applying formula (4.3.8), equation (4.3.3) immediately follows on account 

of the trivial operator identity 9A ~A = 0 .[] 

In spite of the fact that (4.4.1) evidently gave a correct description of nega- 

tive helicity fields that when taken in conjunction with (4.3.5) allowed for a com- 

plete characterization of massless fields of all helicities in terms of twistors 

functions all defined on the same space (i.e. the Z ~ space), the "old" description 

(i.e. the Z space for one helicity, and the W space for the other) was adhered to 

for a long time~ : see, for example, Woodhouse (1975) and the well-known opus Penrose 

(1975a)--it was only with the coming of the "twistor particle hypothesis" [Penrose 

1976], and the "twisted photon" [Ward 1977a] that the validity and appropriateness 

of formula (4.4.1) for negative helicity massless fields emerged as more clearly 

obvious: complete justification followed later with the advent of sheaf eohomology 

methods. (Cf. Chapter i0.) 

4.5 The Positive Frequency Condition. 

Twistor contour integral formulae for massless fields--alluded to briefly on 

page 347 of Penrose's 1967 "Twistor Algebra" paper--are first introduced and des- 

cribed in some detail in Penrose (1968b), in which it is asserted, on page 64, that 

a "... feature of twistor analysis, which has been highly instrumental in the motiva- 

tion for its original development, lies in the extent to which it 'geometrises' an 

important aspect of quantum mechanics, n~nelv the splitting of field amplitudes into 

positive and negative frequency parts." And today, notwithstanding numerous ad- 

vances and developments, this feature of the theory remains one of its most fascina- 

ting and compelling--especially when taken, according to various proposals, over 

to the non-linear regime [cf. Penrose 1976; and Ward 1977a and 1977b]. 

-ik-x 
A plane wave e has positive energy if k is future-pointing, and negative 

energy if k is past-pointing. In the positive energy case the wave can be extended 
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over all of ~+ since, putting x a = va-iw a , the wave function in ~+ is given by 

-ik- v e -k- w e , and is manifestly well-behaved for all values of future-pointing w. 

Similarly, in the negative energy case the wave can be extended over all of CM 

It is common, in many branches of theoretical physics, to define positive and nega- 

tive frequency in terms of these analyticity conditions--and this is the case for 

twistor theory as well. 

According to Proposition 2.6.4, and the remarks immediately following it, the 

--+ 
points of CM correspond to projective lines lying in ~+, i.e. the domain for which 

Z~Z > 0 . Thus in order to characterize a massless field as positive frequency it -- 

--+ 
suffices to restrict ones attention to PT By requiring f(Z ~) to have suitable 

---+ 
analyticity properties in PT one can ensure that the related field is well-defined 

throughout ~+ , and thus of positive frequency. 

This brings us back to the problem, mentioned in Section 4.3, of the domain on 

which f(Z ~) is to be defined, and the question of what sort of singularities f(Z ~) 

ought to exhibit. Part of the reason why this problem is so difficult is due to 

the fact that the question is not posed quite correctly. For the sort of objects 

that are being dealt with here are not really functions at all--at least, in the 

standard sense--but rather, are elements of the sheaf eohomology group 

(4.5.1) HI (~+, 0 (-2s-2)) , 

where 0(-2s-2) is the sheaf of germs of holomorphic functions, homogeneous of degree 

-2s-2. A twistor function f(Z ~) provides a "representative cocycle" for an element 

of (4.5.1). It is possible to have several distinct twistor functions, all defined 

over distinct domains, all of which yet are representatives for the same element of 

the cohomology group (4.5.1)Jthis is why, in the older twistor literature, for a 

specified ZR~ field the domain of the corresponding twistor function seems a bit 

"shifty ~' . And it was only in 1976 that the matter began to clear up, and it emerged 

that positive frequency analytic massless fields of helicity s corresponded to 
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elements of (4.5.1), thereby specifying precisely the relationship between such 

fields and the complex analytic geometry of twistor space. For discussion on this 

point see Chapter i0 here, and also Penrose (1977), and the book Complex Manifold 

Techniques in Theoretical Physics (Eds.: D. Lerner and P. Sommers; Pitman, 1979). 

We shall return to matters of sheaves and cohomology later. Let us now con- 

sider more explicitly the sort of condition that must be imposed (and that can be 

refined and spelled out more explicitly within a sheaf theoretic framework) on a 

twistor function in order to ensure that the field it generates has positive fre- 

quency. It is necessary first to build up some apparatus useful in evaluating 

contour integrals. The following result--well known, in a slightly disguised form, 

from elementary complex analysis--is of fundamental utility: 

4.5.2 Lemma. Let ~A' and ~A' be a pair of fixed spinors: then the contour 

integral formula 

(4.5.3) 2Ti(~A,~A')-I / A' B' = (~ ~A,~ TB,)-IA~ 

is Valid, where the contour surrounds the pole ~B'~B, = 0 once in the positive sense 

A' 
(or, equivalently, surrounds the pole d TA, = 0 once in the negative sense). 

Proof. Since the differential form to be integrated in homogeneous of degree 

A' 
zero, z can be scaled such that in a suitable basis its components are given by 

A' 
(4.5.4) Z = (~ , i) , 

and the associated differential form AT (defined in equation 4.3.6) is given by 

(4.5.5) AT = -dl . 

Writing, in the same basis, ~A' = 

to see that 

A' 
(4.5.6) ~ TA,~ B T B 

(a,b) and ~A' = (f,g), it is straightforward 

,)-lAw = i(al + b)-l(fl + g)-idl . 

Thus, taking the contour to surround the pole at i = -g/f , elementary calculus of 

residues shows that the result of the integral is 
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(4.5.7) 
A i -i 

2~i(ag - bf) -I = 2~i(~A,~ ) [] 

Armed with this lemma, we can examine the twistor function 

(4.5.8) f(Z ~) = (P Z~Q~Z~) -I , 

and see what sort of field it gives rise to. It is worth noticing that if P is 

any fixed dual twistor with spinor parts given by 

A I 
(4.5.9) P~ = (PA ' P ) 

then the following formula is valid (cf. equation 3.5.17): 

pxpZd A' (4.5.10) = P ~A' ' 

A' A'A A' 
where p (x) = ix PA + P is the solution of the primed twistor equation (cf. 

Section 2.5) associated with the dual twistor P Accordingly, we have the 

identity 

px(p Z~Q~Z~ ) A' B' -i 4.5.11) -i = (p ~A 'q ~B,) , 

A i A i 
where p and q are solutions of the primed twistor equation. Inserting this 

identity into the contour integral formula 

(4.5.12) ~(x) =/pxf(Z@)a~ , 

we can apply Lemma 4.5.2 in order to evaluate the field @(x), obtaining: 

A i -1 
(4.5.13) @(x) = 2~i(PA,q ) 

It is straightforward to verify--using the primed twistor equation--that @(x) 

satisfies the wave equation. But what conditions must be imposed in order to ensure 

that @(x) is of positive frequency? A geometrical argument can be employed to give 

the correct answer. Note that the twistor function f(Z ~) given in (4.5.8) is 

singular on the plane P and on the plane Q<~ (recall that by "the plane P we mean 

the locus in PT given by P Z ~ = 0 ; cf. Section 2.6). Thus--providing that we stay 

away from the intersection of P and Q --the twistor function (4.5.8), when re- 
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Figure 4.1: An Elementary State 

÷ 

/ x 

- = _ = 0) 

intersect at the l±ne PNQ (P[~Q~]X ~ - 0). 

PnX 

Any line X which does not meet the line P~Q 

QnX 
intersects the planes P and Q at a pair of 

at the points PNX and QNX. 

these two points, one obtains a result @(X) which depends of course on the 

AA' 
choice of line X. Each line X corresponds to some point x in complex 

AA' 
Minkowski space, and if X lies in PT + then x belongs to the future 

tube. Since in this case @(X) is defined for every line in PT +, we obtain a 

AA' 
field @(x ) which is non-singular throughout the future tube and thus 

distinct points PNX and QNX. The holomorphic 

function f(Z ~) = (p Z~)-l(Q Z~)-i when re- 

stricted down to the line X is singular only 

Integrating along a contour ~ which separates 

exhibits the positive frequency property. 
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tricted down to any projective line, will have precisely two singularities: a pole 

at the intersection of the line with P , and another pole at the intersection of 

the line with Qd . Accordingly, for every line X ~ that avoids the line of inter- 

section of the planes P and Q~ --i.e. avoids P[~Q~] --we have a pair of distinct 

poles, and a contour exists separating the two poles, and we can evaluate the 

integral so as to obtain a well-defined value for the field @(x). The singulari- 

ties of the field are at spacetime points corresponding to lines in PT that 

meet the "bad" line P[~Q~] . Now we want, for positive frequency, a field that is 

non-singular throughout ~+. Since points in ~+ correspond to lines in ~+ , 

we accordingly require that every line in ~+ should avoid the bad line. The only 

way to ensure this is to demand that the bad line lie entirely within PT- . Now 

if P[~Q~] lies in PT- , then the complex conjugate line P[~Q~] must lie in PT + . 

This is ensured if we have 

(4.5.14) P P~ > 0 , Q O~ d > 0 

together with 

PE~Q~]pE~Q B] > 0 , (4.5.15) 

this latter condition being imposed in order that the imaginary part of the complex 

spacetime point corresponding to ~[~8] should be timelike (in accordance with 

equation 2.5.10). 

Summing up, we see that the field @(x) given by equation {4.5.13), which is 

generated by the twistor function (4.5.8), will be positive frequency if and only 

if P and Q~ satisfy equations (4.5.14) and (4.5.15), these amounting to the condi- 

tions that the planes P~ and Qd intersect in a line that lies entirely in PT- 

This configuration is illustrated in Figure 4.1. 

It may not be evident at a glance that formula (4.5.13) describes a positive 

frequency field if equations (4.5.14) and {4.5.15) hold, although from the geome- 

tric argument above we know that it must. Indeed, in formula (4.5.13) the singu- 

larity structure of @(x) is not as evident as one would perhaps like. This situa- 

tion can be remedied with the following observations: 
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4.5.16 Proposition. The solution pB' (x) of the primed twistor equation, 

corresponding to the dual twistor P , is given by 

B ' ~B ' 
(4.5.17) P (x) = P X , 

where X ~B' is given as in equation (3..5.16). 

The proof is easy, and can be left to the reader. 

4.5.16, we can rewrite (4.5.13) in the form 

(4.5.18) ~(x) = 2~i(P X~A,Q~X ~A') -i 

Using equation (3.5.20) this becomes 

[aQB] x~) -i (4.5.19) @(x) = 2~i(P , 

which, according to equation (2.5.9), gives 

-I 
(4.5.20) @(x) = ~ik[(xa-r a) (Xa-ra)] 

Now, using Proposition 

a . 

where r is the complex spacetime point corresponding to the bad line P[~Q~] , and 

k is the normalization factor P Q~I ~ o 

Thus we see that @(x) is singular whenever x a is complex null separated from 

the point r a. This is consistent with our earlier observation that @(x) should be 

singular precisely on the set of spacetime points corresponding to the set of lines 

which meet the bad line--since the meeting of a pair of lines correponds to the com- 

a --+ 
plex null separation of the associated spacetime points. But so long as x cCM , 

--+ 
the field @(x) will not be singular, since a point in CM can never be null separated 

from a point in CM- , as can be verified with a short calculation. 

Fields of the form (4.5.20) are called elementary states: they are the proto- 

types of non-singular, asymptotically well-behaved, normalizable, positive frequency 

wave functions--and they admit a remarkably simple characterization in twistor terms, 

by means of twistor functions of the form (4.5.8). The twistor function (4.5.8) il- 

lustrates the sort of singularity structure that must be exhibited in order that 

the associated spacetime field be positive frequency--namely, the singularities of 

f(Z ~) fall, in ~+ , into two disjoint open sets: this ensures that the singularities 
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of f(Z ~) when restricted to any line in ~+ will fall into two disjoint sets, and 

thus ensures that on each line a contour integral can be taken, thereby giving a 

--+ 
well-defined field throughout CM For further discussion the reader may wish to 

consult Penrose (1968b), pp. 76-80. 

Chapter 4, Notes 

i. For a standardized treatment of zero rest mass fields from a spinor point of 

view the reader may wish to consult Penrose (1965), Pirani (1965), or Penrose 

(1968a). 

2. Strictly speaking, for positive frequency all that is required is that the 

+ 
field be well-defined throughout CM . In order to be normalizable (in a conven- 

tional sense) the wave function must be defined on real Minkowski space as well. 

3. This proposition is proved, in essentially the manner described here, in 

Penrose and MacCalium (1972), section 5.3. The same result, in a somewhat more 

primitive notation, can be found in Penrose (1968b), section 3, and in Penrose 

(1969). 



CHAPTER 5 

TWISTOR QUANTIZATION: MASSIVE FIELDS 

5.1 Operators for Momentum and Angular Momentum. 

If we are to apply rule (4.2,2) in order to quantize systems composed of one 

twistor, then for systems composed of several twistors it would seem natural to im- 

pose this rule individually for each of the constituent twistors: with this hypothe- 

sis the quantization rule for a system Z ~ of several twistors is 
i 

( 5 . 1 . 1 )  ~ i  . , ~(= _~/~) 
C/, 

and it should be evident that (5.i.1) leads to the following commutation relations: 

E4 , 

Applying rule (5.1.1) to the classical n-twister expression for the kinematical 

twistor, given in equation (3.3.11), one obtains the following expression for the 

resulting operator : 

(5.1.3) A~ = 2Z!~I~)TZ i , 
1 Y 

and it is straightforward to verify--using the identity I (~) = 0 and commutation 

relations (5.1.2)--that the factor ordering in expression (5.1.3) is irrelevant. 

It is tempting to conjecture that the spinor parts of A~ are the momentum and 

angular momentum operators for the n-twistor system Z ~ And indeed, if we put 
i " 

2i~ AB 0 PA 

(5.1.4) ~B PAB ^ 
= A~ = 

\ P A '  B 0 ~A' . ~A'B 
B 21~ / 

^ 
where A~ 

(5.1.5) 

is the Hermitian conjugate of ^ ~A ~ , defined by 

^ = U i z Y 
~ S  t~ S ) y  i ' 

then the following result is valid: 

5.1.6 Proposition. The momentum operator ~a and the angular momentum operator 
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^A'B' AB 
~ab defined by ~ab = ~AB A'B' + P E satisfy together the correct Poincar~ 

commutation relations (4.3.12). 

Proof. Difficult way: using (5.1.2) one can, after some computation, arrive 

at the following commutation relations: 

(5.1.7) [~8 , ~po] : 2~(piO) 8 + 2~8(pio)d 

A 
(5.1.8) [A d~ , Apo] = 4@[~Io)yA~)Y 

Decomposing these relations using (5.1.4), (3.2.1), and (2.3.6), then reassembling 

them in terms of ~a and ~ab , the result turns out to be (4.3.12). Easy way: 

note that ~a and ~ab are each linear in the corresponding operators for the consti- 

tuent ZRM subsystems. On account of (5.1.2), kinematical operators for distinct 

subsystems always commute: using this fact, one can readily verify that since equa- 

tions (4.3.12) hold for each of the subsystems individually, they also hold for the 

total kinematical operators.[] 

It is worth remarking that if we relax the condition ~i = -~/~Z~ then equations 

(5.1.3), (5.1.5), (5.1.7) and (5.1.8) do not necessarily automatically imply (5.1.2)- 

for example, one could a priori equally well have used anticommutators in (5.1.2) 

rather than commutators. An interesting problem would be to determine the most 

general set of commutation relations (or anticommutation relations) imposable on 

Z~ and ~i such that (5.1.7) and (5.1.8) hold. In what follows we shall continue in 
1 

adopting the "elementary" commutation relations indicated in equations (5.1.1) and 

(5.1.2)--with, as it turns out, reasonable justification. 

Another waY, incidentally, of deriving the correct expressions for the opera- 

tors of momentum and angular momentum is to examine infinitesimal Poincare trans- 

formations, since the kinematical operators arise as the generators of such trans- 

formations. Inasmuch as the Poincaregroup is a subgroup of U(2,2), the matter can 

be approached somewhat more generally by first examining the generators for U(2,2) 

and then specializing to the Poincare group. Now an infinitesimal U(2,2) transfor- 

mation must be of the form U~ = 6~ + isis , where ~ is small; the condition of 

unitarity is: 
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which, with the neglect of s 2 A~ , asserts that ~ is Hermitian. Thus infinitesimal 

U(2,2) transformations are of the form: 

(5.1.10) --+ + leA Z = 1 i ' AB AB 

Using (5.1.2), this transformation can be rewritten in the following way: 

(5.1.11) Z~ Z ~ --+ + is [Z i AUE p] 
m i ' O ~ ' 

^@ is the operator defined by where E~ 

(5.1.12) E~ = ZAZ ~^i 

^~ the generators of infinitesimal U(2,2) Thus, the components of the operator E~ are 

transformations. Proceeding on to Poincare transformations, one finds the following 

lemma of some utility: 

5.1.13 Lemma. Infinitesimal Poincare transformations are of the form 

~ ~ ~ P~yl ~Y P~YI~y (5.1.14) U B = 68 + isA 8 , A 8 = + , 

P ~ is a symmetric twistor, and Pd~ is its complex conjugate. where 

Proof. As indicated in Section 2.3, Poincare transformations are SU(2,2) trans- 

formations which have the extra property that they preserve the infinity twistors. 

Thus, A~ must be tracefree, and must satisfy: 

( 5 . 1 . 1 5 )  (~ + isA~)(~ + i s A ~ ) I  pU = I ~ , 

which, to first order in £ , is the condition 

(5.1.16) A[~I B]Y = 0 
Y 

The general solution to (5.1.16), momentarily forgetting that we want A~ to be 

Hermitian, is: 

= P~yI ~Y + (5.1.17) A~ QaYIsy , 
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where P ~ is a symmetric twistor, and Q~ is quite arbitrary, with the imposition 

r-7 
of the condition that A~ is Hermitian, the desired result follows immediately. [_J 

Using Lemma 5.1.13 it is straightforward to see that infinitesimal Poincare 

transformations are of the form (5.1.11), with 

1 

thus confirming that the kinematical operators arise as the generators of such 

transformations. 

5.2 Contour Integral Formulae for Massive Fields. 

In view of the description of ZRM fields in terms of holomorphic functions of a 

single twistor, it is not unnatural for the case of massive field.s to consider 

holomorphic functions of two or more twistors. In the case of massive fields con- 

siderably more scope is offered in the structuring of the associated contour inte- 

A' hi 
gral formulae, since coefficients of both the ~i type as well as the ~A type can 

appear. We shall write 

(5.2.1) pxf(Z~) = f(px Z ) = f(ix ~A'j ' ~A'j ) 

AA' 
for the restriction of an n-twistor function to the spacetime point x The 

associated contour integral formula for f(Z) is as follows: 

A'...i... I ^i A' yp x~A ] (5.2.2) @A ..j...= "'" ~ .... f (Z) a~ , 

A' 
where A~ is the natural projective differential form on the space of the ~i vari- 

ables, given by: 

(5.2.3) ~ = ciJ'''k~m'''n~iA'd~A'd~jB'd~mB'''" d~kc,d~' 

A' 
Note that a~ is a (2n-l)-form, homogeneous of degree 2n in ~. Also, note that 

1 

it is invariant under internal SU(n) transformations (i.e. ~'----+ uT~A'). 

I 

1 1 3 

The field produced in (5.2.2) has group indices as well as spinor indices. 

Thus, it corresponds not to a unique particle state, but rather to an entire multi- 

plet of states--moreover, the multiplet can include states of several different 
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spins. The field (5.2.2) corresponds to a definite particle state only if the 

twistor function f(Z~) is suitably restricted. If f(Z~) is placed in a simultaneous 

eigenstate of a suitably complete set of commuting operators, then a unique field 

belonging to the multiplet (5.2.2) will be selected out, with all the others 

vanishing. Equivalently, if f(Z?) corresponds to a definite particle state, then 
l 

of the myriad possibilities for spinor coefficient structures appearing in (5.2.2), 

only one independent combination will lead to an integral which does not vanish. 

Thus, the twistor particle program--when taken in its most basic form--consists of 

the analysis of a pair of intertwined problems: first, the construction of suitable 

sets of holomorphic differential operators, which correspond to quantum mechanical 

observables, and whose eigenvalues are the quantum numbers of the associated states; 

and second, the classification of all possible spinor coefficient structures, with 

the elucidation of the properties of the states which they project out. As stated 

in Penrose (1977), within the framework of this categorization we shall be able to 

describe "all the quantum numbers possessed by the elementary particles of Nature"- 

and moreover, the twistor function "affords a complete description of a particle, 

both as regards its external and internal parameters". 

5.3 The Mass Operator. 

The title of this section is something of a misnomer inasmuch as the natural 

operator which arises in twistor theory is actually the mass-squared operator. In 

fact, it doesn't seem possible to exhibit a simple twistor operator expression which 

gives the mass linearly. It is perhaps worth noting that, in view of this fact, 

the Gell-Mann mass formula for baryons could not be expected to arise in any partic- 

ularly profound way--and I do not count the "standard" derivation of the Gell-Mann 

formula, using perturbation theory and group theoretical methods, as being in any 

sense profound--within the twistor framework. If the Gell-Mann formula were modi- 

fied so as to apply with squared masses for the baryons, and if higher order cor- 

rection terms were included so as to account for the discrepancies which would other- 

wise materialize, then more scope would be offered for the development of hadronic 

mass formulae using twistor methods. Indeed, such an approach has been advocated 
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by Perj~s and Sparling (1976), and shows considerable promise. 

Following the pattern used in the proof of Proposition 4.3.7 it is straight- 

forward to see that the momentum operator 

^A'A A'^Ai 
(5.3.1) P = Zi Z 

satisfies the identity, 

(5.3.2) iVAA,P x = PxPAA , 

when acting on holomorphic functions of n twistors. And thus for the mass-squared 

operator 

^AA ' 
(5.3.3) ~2 := ~AA, p , 

we have the identity: 

AA' px~2 
(5.3.4) VAA'V Qx + = 0 , 

which shows that if f(Z~) is in an eigenstate of the twistor operator }q2 
1 

, then the 

associated spacetime field (henceforth when we say "field" we shall usually mean 

"spacetime field") will automatically be in the appropriate eigenstate of the con- 

AA' 
ventional spacetime mass-squared operator -VAA,V . Observe, incidentally, that 

using equation (5.3.1) we can rewrite the operator ~2 as 

( 5 . 3 . 5 )  ~2 = ~ . . ~ i j  , 
13 

where M.. and M 13 are partial mass tensor operators, defined by 
~3 

A' ~Ai~ ~ , (5.3.6) Mij = ZA'i~j ' Ml3 = 

obtained in accordance with the quantization of formulas (3.5.2). 

5.4 The Spin Operator. 

The momentum operator and the angular momentum operator, along with the mass- 

squared operator, are all examples of observables which can be expressed directly in 

twistor terms. It should be noticed that these observables are all differential op- 
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erators with polynomial coefficients. All of our observables, in fact, belong to the 

ring of differential operators with polynomial coefficients. Unfortunately, not as 

much as would perhaps be desired is known about this ring, from a mathematical point 

of view--indeed, in this connection M.F. Atiyah (1976) remarks, "This is a very in- 

teresting non-commutative ring which has been neglected by algebraists: it deserves 

a lot of study." Within the ring there are certain elements which are Hermitian, 

and therefore qualified to be regarded as observables. Our problem, then, is to de- 

vise a systematic way of physically interpreting these observables, and the states on 

which they act. Alternatively, given a physical observable taken from the milieu of 

elementary particle phenomenology, one may seek the appropriate differential operator 

with polynomial coefficients to which it corresponds. Whether the right operator has 

been chosen can be determined by examining its eigenvalue spectrum and its commuta- 

tion relations with other known observables, to see whether these are compatible with 

the desired results: there is no a priori guarantee, for a given physical observable, 

that an appropriate twistor operator can be found--but it is implicit in the twistor 

particle hypothesis that this should, in fact, always be the case. 

Let us now, in the light of these remarks, consider the spin operator. A field 

@A...B with mass m is said to be in a definite state of total spin if it is completely 

symmetric in all its indices; the spin is then one-half the number of indices. If 

the field has indices of both types, then, in addition to being symmetric with re- 

spect to both sets of indices, it must be divergence-free: this ensures that by 

taking appropriate derivatives the field can be converted--without loss of informa- 

tion-into a field with indices of only one type, completely symmetric. According to 

relativistic quantum mechanics, the spin-vector operator is defined by 

1 ~bc^d 
(5.4.1) Sa = ~ Cabcd P ' 

and the total spin operator is 

~2 = -SaSa/m 2 , (5.4.2) 

which has eigenvalues of the form s(s+l), where s is the spin. Substituting the for- 

ABcA, B , 
mula ~ab = ~ + ~A'B cAB into equation (5.4.1) we obtain: 
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(5.4.3) ~AA' ^AB^A' .^A'B'^A 
= -i~ PB + i~ PB' 

and the appropriate twistor operator is generated by putting 

^A'B' ^j(A' B') (5.4.4) ~AB = i~!A~B) j , ~ = -i~ ~. 
3 3 

along with (5.3.1). The following result was established by G.A.J. Sparling early in 

the year 1975: 

5.4.5 Proposition. If a twistor function f(Z~) is in an eigenstate of the 

twistor spin operator ~2 defined above, with eigenvalue s(s+l), then the field multi- 

plets associated to f(Z~) by means of contour integral formulae of the form (5.2.2) 

are necessarily of spin s. 

The only proof that I am aware of for this result is rather Complicated and 

not particularly illuminating, so it will be omitted. It would be very interesting 

if someone could devise a short and concise proof, perhaps using cohomological 

methods--this would, of course, entail understanding the twistor functions f(Z~) much 

better, perhaps using some of the ideas suggested in Chapter i0. 

In addition to beina in an eigenstate of the total spin operator, we may require 

that the twistor function is in an eigenstate of some component of the spin-vector 

operator in a particular direction. Thus we define the operator 

= -za~a/m (5.4.6) ~z ' 

where z is a unit spacelike vector, orthogonal to the expectation value of the a 

momentum of the state. If the total spin is S , then the eigenvalue s of the 
z 

operator S lies in the range 
z 

(5.4.7) -s < s < s 
-- z -- [s z = s(mod i)] 

If, for example, s = 1/2 , then s can assume the two values s = ~ 1/2 , correspon- 
z z 

d i n g  t o  " s p i n  up" and " s p i n  down".  Now i f  z i s  a u n i t  s p a c e l i k e  v e c t o r  o r t h o g o n a l  a 

to the momentum P of a plane wave solution then there exists a pair of spinors a 

A IA 
0 and such that 
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AA' (oA~A ' A-A' 
(5.4.8) z = - i I )/~2 , 

A-A' pAA' = m(oA0 A' + I I )/ ~2 , 
(5.4.9) 

A A A 
with 0AI = 1 . Moreover, 0 and I are determined completely, up to phase. For a 

symmetric field @... let us define the quantity @r by 

(5.4.10) s-r r 

AB CD 
@r = ~AB...CD...0 0 ...I I ... 

that is to say, we contract @... with 0 A a total of s-r times, and with 1A a total 

of r times. Then the field @... is in a state of s = s-r if r is the only value 
z o o 

of r for which ~r i s  n o n - v a n i s h i n g .  Thus, f o r  example,  a s p i n o r  f i e l d  OA i s  in  a 

= @A iA , @A OA . state of s z 1/2 if = 0 and is in a state of s = -1/2 if ='0 
z 

5.4.11 Proposition. If a twistor function is in an eigenstate of the operator 

Sz ' then the associated field multiplets are automatically in a definite state of 

s , in the sense described above. 
z 

Again, the proof is a bit tedious and will be omitted. It is perhaps worth 

mentioning, however--for the sake of the reader who may himself wish to verify 

Propositions 5.4.5 and 5.4.11--that the attendant calculations simplify considerably 

if one works with momentum eigenstates. 

Summarizing, we see that there exist appropriate twistor operators ~2 and 
z 

such that if a twistor function is in an eigenstate of these operators, then the 

associated field--or fields, in the event an entire multiplet is being characterized-- 

will automatically emerge in the correct eigenstate. 

5.5 Internal U(n) Casimir Operators. 

We now know how to characterize in explicit twistor terms the operators corres- 

ponding to momentum, angular momentum, mass, and spin. In addition, we require our 

twistor functions to be in eigenstates of certain internal obserbables, i.e. observa- 

bles whose eigenvalues remain unchanged when the states upon which they act are sub- 

jected to Poincare transformations. These observables determine the behavior of 

twistor functions under internal unitary transformations, i.e. transformations of the 
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(5.5.1) f(Z~) ~ f(U3Z~.) , 
i ] 

with U~ u n i t a r y .  1 
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By requiring f(Z~) to be in a spin eigenstate, and simultaneously 

in an eigenstate of the Casimir operators of the internal unitary group, as well as 

in an eigenstate of the Casimir operators of certain subgroups of the internal 

unitary group, one can arrange for a unique state to be selected out from the field 

multiplet (5.2.2) as non-vanishing. The set-up varies according to how many twis- 

tors are being considered--we shall consider here the first three cases: 

One Twistor. In this case there is only one Casimir operator--namely, the 

"homogeneity" operator: 

(5.5.2) Z~/~z~ = -Z~Z~ , 

which arises as the generator of infinitesimal unitary transformations--i.e., U(1) 

transformations--acting on Z ~ . The corresponding observable is the helicity opera- 

tor : 

(5.5.3) s = ~ z~ - 

as described in Section 4.2. 

Two Twistors. 

operator 

1 , 

Infinitesimal internal U(2) transformations are generated by the 

(5.5.4) E~ Z?Z j , (i = i, 2) 

There are two Casimir operators for u(2), namely: 

( 5 . 5 . s )  E~ , ~[i~j] (i = 1,  2) 
l i ] 

The state can be further characterized by breaking the U(2) symmetry, and looking at 

the U(1) subgroup acting on the first twistor alone--and the Casimir operator as- 

sociated with that group is the homogeneity operator, 
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z ~  1 
(5.5.6) - 1 

Nothing new is obtained by looking at the U(1) subgroup acting on the second 

~i and E~ = twistor, since if the twistor function is in an eigenstate of Z 1 3 

Z~Z 1 Z~Z 2 then it will be in an eigenstate of Z~Z 2 1 ~ + 2 ~ ' 2 ~ automatically. 

Thus, there are three "new" internal observables for two-twistor systems-- 

the two "homogeneities", and the quadratic operator E[~E~ ] Let us denote by 
l] 

E# the tracefree part of E~ , i.e.: 
l 1 

1 k j 
(557) = E - 

For some purposes it is useful to consider the quadratic operator 

(5.5.8) 12 : ~ ~-TE[?E~ ] , (i = l, 2) 
~3 

which, of course, can if desired be expressed in terms of E_i and E[?E~]I J 
i i 3 

remarkable degeneracy arises in the case of two twistors: 

5.5.9 Proposition. When acting on two-twistor functions that are in mass 

eigenstates, the following operator identity holds: 

(5.5.10) 22 = ~2 , 

where ~2 is the total spin operator (cf. previous section). 

This result was first established early in 1974 by K.P. Tod, the corresponding 

"classical" result having been obtained earlier by Z. Perjes [cf. his 1975 paper, 

section IV]. The proof is simply by routine algebra, and can be left to the 

reader. What is remarkable is that one of our new internal observables turns out 

to be degenerate with an observable we already had--namely; the spin. Thus, there 

are really only two "new" observables for two-twistor systems--the two homogenei~ 

ties. 

Three Twistors. In this case, life is more complicated. Infinitesimal U(3) 

transformations are generated the operator 

(5.5.11) E# = ~^J (i = i, 2 3) 1 ZiZ~ ' 
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and there are three Casimir operators, namely: 

(5.5.12) E i E[iEJ] ~[i~j~k] (i = i, 2, 3) 
' i j ' ~ i~j~k 

For additional observables, we can select out the U(2) subgroup acting on the first 

two twisters. Then, following the discussion of two twisters above, we obtain three 

more observables : 

(5.s.13) ~i , E[i~ j] (i = i, 2) 
l i 3 

i making six internal observables altogether. Proposition 5.5.9 is not and E 1 , 

valid for three-twister systems, since the spin necessarily involves all three 

twisters. This is not to say that ~2 has no meaning for three-twister systems-- 

indeed, it does: it turns out to be the hadronic isosPin operator, as will be dis- 

cussed in Chapter 6. 

Thus for three-twister systems we have as new internal observables the three 

homogeneities, the two-twister "isospin" operator {2 , and the two SU(3) Casimir 

operators 

(5.5.14) 22 

where E~ is defined by 
3 

= ~[i~j] 23 ~.[i~j~k] (i = i, 2, 3) 
i j ' = i j k 

~i E~ 1 Ek~i (5.5.15) E. = - (i = i, 2, 3) 
] 3 ~ kj 

(5.5.15) it is straightforward to verify that 22 and 23 can be Again, using expres- 

sed in terms of the three U(3) Casimir operators given in (5.5.12). 

For systems composed of larger numbers of twisters, the analysis proceeds a- 

long similar lines--although it must be said that things become quite complicated 

for systems composed of four or more twisters, and work has only really just begun 

for such cases. As a "standard" arrangement for n twisters, one may envisage a 

nested set of unitary groups 

(5.5.16) U(1) c U(2) c U(3) c--. c U(n-l) c U(n) , 
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where U(n) acts on all n of the twistors, U(n-l) acts on the first n-i of these, 

and so on and so forth, down to the group U(1), which only acts on the very first of 

the n twistors. Now let us consider the set of all the Casimir operators of all 

these unitary groups° It is a straightforward task to verffy that these operators 

all commute amongst each other. Thus we can take the entire collection of these 

Casimir operators to be a set of commuting observables for our n-twistor particle 

state. To this set we may wish to adjoin certain other operators, corresponding, 

for example, to mass and spin, and in this way proceed to establish a set of obser- 

vables sufficiently maximal for the purpose of unambiguously identifying the particle 

state. It should be noted that on account of the fact that the dimensionality of 

twistor space is four, Casimir operators of order greater than four vanish identi- 

cally, for any value of n. For n > 4 the total number of internal unitary group 

Casimir operators built in accordance with the nested sequence 5.5.16 is 4n-6. 

For certain purposes it is useful to consider schemes alternative to the "standard" 

arrangement just described. Examples of various alternative schemes arise, as we 

shall see, in Chapters 7 and 8, in the context of studying both hadrons and 

leptons. Alternative schemes must be employed also in the analysis of many-particle 

states. 



CHAPTER 6 

THE LOW-LYING BARYONS 

6.1 The Quark Model. 

Most of the known elementary particles fall into two broad classes: leptons and 

hadrons. The only particles which fall outside of these classes are the photon, the 

hypothetical graviton, and the hypothetical "weak" bosons (the W-particles, and the 

Z-particle). In view of increasing evidence favoring a unification of the weak and 

electromagnetic interactions, it is not unfair to say that the weak bosons and the 

photon should "morally" be thrown in with the leptons. Then--ignoring the graviton 

(whose presence in the world is a bit of a nuisance for particle physicists)--there 

are two broad classes of particles, i.e. leptons and hadrons, and each class can be 

subdivided into two subclasses: bosons and fermions. Bosons have integral spin and 

fermions have half-integral spin. Bosonic hadrons are called "mesons", and fer- 

mionic hadrons are called "baryons". In this chapter we shall be concerned with the 

twistor representation of those baryons that lie on the lower end of the mass spec- 

trum. 

Hadrons can be regarded as--at least in some sense--being built up out of cer- 

tain fundamental units called "quarks". Each baryon, for example, is composed of three 

quarks. There are several different kinds of quarks--at least three, probably more-- 

and so by choosing various combinations of three quarks, various kinds of baryons 

are manufactured. Many people like to think of quarks very literally, and regard 

baryons as being composite particles. In what follows we shall adopt a more con- 

servative (and more reasonable) approach, and regard quarks purely from an abstract 

viewpointpaccording to our view, the quark model merely provides a convenient 

descriptive language for many of the observed group-theoretical aspects of hadron 

phenomenology, and the remarks which follow should be interpreted in just that 

(1) 
sense 

The "old" hadrons--in particular, those hadrons known before 1974--can be 

described in terms of three distinct types of quarks; for many of the post-1974 

hadrons, it appears that at least four types of quarks are required. For the moment, 
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let us consider just the first three types of quarks. These quarks are distin- 

guished by varying assignments of quantum numbers. In addition to these three 

"light" quarks, we also have the three corresponding antiquarks. Each quark state 

has spin 1/2: the quarks have unprimed spinor indices, and the antiquarks have 

primed spinor indices. The three quark states will be denoted 

(6.1.1) ~iA = (u A d A s A) 

and the three antiquarks will be denoted 

A A' A' 
(6.1.2) ~i' = (u , d A' , s ) , 

where the symbols u, d, and s stand for "up", "down", and "strange" (or, according 

to some accounts, "sideways"). The use of the symbol iA for the quark triplet, 

A' 
and the symbol ~. for the antiquark triplet, is for the sake of a bit of stylistic 

l 

augury. 

In hadron dynamics there are two quantum numbers which are always strictly 

conserved--the electric charge and the baryon number; and if a state composed of 

several quarks is represented by a product of quark states, then the total electric 

charge and baryon number are obtained by summing the values for the various consti- 

tuent states. In strong interactions and electromagnetic interactions (but not 

weak interactions) another quantum number is conserved, which is analogous to elec- 

tric charge in certain ways, called the hypercharge. Each quark state is assigned a 

particular electric charge, hypercharge, and baryon number--and, for various reasons 

which can be justified in many ways, these quantum numbers take on peculiar frac- 

tional values: 

quark state: A d A A A' A' u s u d A' s 

charge 2/3 -1/3 -1/3 -2/3 1/3 1/3 

hypercharge 1/3 1/3 -2/3 -1/3 -1/3 2/3 

baryon number: 1/3 1/3 1/3 -1/3 -1/3 -1/3 

6.1.3 Quark quantum number assignments. 



A 
It is convenient to regard the u 

aA 
states of an "isospinor" quark state n 

n aA = (u  A , d A) 

(6.1.4) 

A' A' n a = (u , d A' ) 
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quark and the d A quark as being two distinct 

according to the scheme 

(a = i, 2) 

(6.1.5) 

A ....................... Y= 1 

N ....................... Y = 1 

....................... Y= 0 

A ....................... Y = 0 

Z ....................... Y= -i 

....................... Y = -2 

I = 3/2 

I = 1/2 

I = 1 

I = 0 

I = 1/2 

I= 0 

For most of these types there are many examples known: type N ("nucleon"), for ex- 

ample, includes the proton and the neutron, as well as many excited states, or 

"resonances", similar to the proton and neutron inasmuch as they have the same 

values of the basic quantum numbers B, Y, and I. 

Since baryons have B = I, and quarks have B = 1/3, the simplest way of con- 

structing baryons is out of three quarks. Here we list all possible combinations 

of three quarks: 

are labelled as follows: 

The indices a,b,.., are called isospin indices (not to be confused with Minkowski 

space indices). A product of various quark isospinors and antiquark isospinors is 

said to be in a definite state of total isospin if it is tracefree and symmetric 

with respect to its isospin indices; the total isospin is then one-half the number 

of free isospin indices present. The strange quark s A counts as an isoscalar, and 

does not contribute to the isospin of a state. The isospin eigenvalue is denoted I. 

There are observed in nature six distinct types of well-established baryon 

(B=I) states, distinguished by their hypercharge (Y) and total isospin; these types 
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d A d B d C 

d A d B sC 

A B C A u B d C 
u d d u 

u A d B C 
s 

A B C A B C 
d s s u s s 

A B C 
s s s 

A B 
u u 

A B C 
u u u 

C 
s 

6.1.6 Combinations of Three Ouarks 

These combinations are evidently obtained by considering the "supermultiplet" 

configuration 

(6.1.7) Ai Bj Ck 

and allowing the indices i, j, and k to range over the values i, 2, and 3. By 

symmetrizing over the spinor indices in each of the combinations in (6.1.6), we ob- 

tain a set of ten spin 3/2 states. The quantum numbers of these states are given 

according to the following scheme: 

A- A ° A + A ++ ................... Y = i, I = 3/2 

Z- Z ° Z + ........................ Y = 0, I = i 

(6 .1.8)  

.......................... Y = -i, I = 1/2 

~- . ............................ Y = -2, I = 0 

The superscript on each state denotes the electric charge value. In addition to 

these ten spin 3/2 states, it is also possible to form eight independent spin 1/2 

states from the combinations listed in (6.1.6), the quantum numbers of which are as 

follows: 

(6 .1.9)  

N ° N + ........................ Y = i, I = 1/2 

~- zo Ao Z+ ..................... Y = 0, I Z : i, I A : 0 

~o 
........................ Y = I, I = 1/2 . 

These eight states comprise the basic "baryon octet", and the various spin 1/2 com- 

binations corresponding to them are given explicitly below: 



8O 

(6.1.10) 

B N ° 
dAdBU ........................... 

B + 
UAdBU ........................... N 

dAdBSB ........................... E- 

u (AdB) sB ........................... o 

B + 
UAUBS ........................... E 

SAuBdB ........................... i ° 

SASBdB ........................... Z- 

B _o 
SASBU ........................... 

(neutron) 

(proton) 

Note that there are two 

bination uAdBs C down to 

and the other gives the 

linearly independent ways of ~educing the spinor com- 

o 
a spin 1/2 state: one of these gives the I = 1 state E , 

I = 0 state A ° . The isospin multiplet content of (6.1.9) 

and (6.1.I0) can be recorded more explicitly as follows: 

a b cB 
n A n B n 8bc ......................... N (isodoublet) 

(6.1.11) 

(a b) B 
n (AnB) s ............................. E [isotriplet) 

a B 
n B s s A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Z ( i s o d o u b l e t )  

a bB 
n B n s A 8ab ......................... A (isosinglet) 

where 8 is the antisymmetric isospin "epsilon" tensor. 
ab 

Suntming up, we see that from the supermultiplet configuration (6.1.7) we obtain 

a spin 1/2 octet, and a spin 3/2 decimet--and it is indeed truly remarkable (this 

fact is perhaps the true essence of the role of SU(3) in physics) that the lowest 

lying baryon states group themselves naturally into a spin 1/2 octet and a spin 

3/2 decimet. Some of the basic physical properties of these states are summarized 

in Table 6.I. It is important to notice that all of the octet members are 

stable to strong decays, and are unstable (with the exception of the proton, which 

is completely stable) only to weak/electromagnetic decay. Amongst the decimet mem- 
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Table 6.I 

The Low-Lying Baryons 

Particle 

P 

n 

A 

E + 

2 ° 

Z 

~O 

E 

£(1232) 

Z (1385) 

H (1530) 

(16'72) 

Mass (MeV) 

938.2796(27) 

939.5731(27) 

115.60(05) 

1189.37 (06) 

1192.47(08) 

i19~.35(06) 

1314.9(6) 

1321.32(13) 

1230-1234 

[+]1382.3(4) 
[011382.0±2.5 

[-]1387.5(6) 

[011531.8(3) 
[-]1535.0(6) 

1672.2(4) 

Mean Life 
or Decay 

Full Width Modes 

stable 

918 (14) sec pe-~ 

2 . 6 3 2 ( 2 0 ) x 1 0  - 1 0  s e c  p ~ -  
n~  o 

pe-~ 
p~-~ 
p~-y 

.802(5)xi0 -I0 sec 

5.8(1.3)x10 -20 sec 

1.483(15)xi0 -10 sec 

2.90(i0)xi0 -I0 sec 

1.654(21)xi0 -I0 sec 

110-120 MeV 

35(2) MeV 
~35 MeV 
40(2) MeV 

9.1(5) MeV 
10.1±1.9 MeV 

+0 4 -10 
1 . 1 _ o i 3 X l O  s e c  

pzO 

nz + 

pY 
n~+y 
Ae+y 

Ay 
Ae+e - 

nz- 
ne-~ 
n~-~ 
Ae-~ 
nw-y 

A~ o 

Ay 

AT- 
ie-~ 
A~-v 

Nw 

AT 
Z~ 

Ew 

~o~- 

E -~o 
AK- 

Fraction 

100% 

64.2 
35.8 

8.07 (28)xi0 -4 
1.57 (35)xi0 -4 
.85 (14) xl0 -3 

51.6 
48.4 

i. 24 (18)x10 -3 
.93 (i0) xl0 -3 

2.02 (47)xi0 -5 

~100% 
5.45xi0-3 

~100% 
1.08(04)xi0 -3 
.45(04)xi0 -3 
.60(06)xi0 -4 
4 . 6 ( 6 ) x 1 0  -4  

~100% 
O.5±O.5% 

~100% 
0.69(18)xi0 -3 
(3.5±3.5)xi0 -4 

~99.4 

88±2 
12±2 

100% 

100% 
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bers, only the ~ particle (whose existence was predicted by Gell-Mann on the 

basis of SU(3) theory, and subsequently confirmed with great drama) is stable 

against strong decay, and the remaining states are observed as resonances in various 

strong interactions. Aside from the basic octet and decimet members listed in 

Table 6.I many additional baryon states have been observed. These also seem to 

clump together naturally into octet and decimet configurations (as well as some 

possible A singlet states), as will be discussed in Chapter 7. 

6.2 The Three-Twistor Model for Low-Lying Baryons. 

The transition from the quark model to twistor theory is achieved by inter- 

preting the "quark configuration structure" of a hadron state as the "spinor co- 

efficient structure" which appears in the contour integral formula (5.2.2) relating 

^ iA 
twistor functions to field multiplets. According to this view the operator 

A' 
is interpreted as a quark triplet, and we interpret ~. as an antiquark triplet 

1 

(although this latter interpretation must--as we shall see--be suitably qualified). 

Thus the fields constituting the low-lying baryon supermultiplet are given by the 

following contour integral formula: 

(6.2.1) -ABC = 

If f (Z) is in a definite quantum state, then a particular member of the supermulti- 

ijk will be picked out uniquely as being non-vanishing. For example, if plet ~ABC 

f(Z) should be a proton state, then--selecting the correct spinor coefficient struc- 

ture using (6.1.10)--the only non-vanishing field will be given as follows: 

(6.2.2) ~A = xUAdB uB f(Z)A~ , 

where UA ' dA ' and SA are the three components of the operator ~ . 

6.3 Electric Charge, Hypercharge, Baryon Number, and Isospin. 

What remains to be shown is how to construct in explicit twistor terms the 

various hadronic observables which we require f(Z) to be put into an eigenstate of. 

For our twistor triplet Z~ (i = 1,2,3) we shall write 
l 
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(6.3.1) Z ~, = (U e , D ~ , S e) 
l 

^i 
and analogously the three operators Z 

e 

scheme 

(= -~/~Z~) will be labelled according to the 

• A 
(6.3.2) ~ : (~e ' ~e ' s) 

with: 

(6.3.3) U~ = -~/~U~ De = -$/~D~ S~ = -~/~S e 

The three twistor operators 
\ 

( 6 . 3 . 4 )  G = _ ~ e ~  + 2 DC~ ~)0~ " _SC~e ~ d= - +2 s = +2 

are the "total occupation numbers" for the three types of quarks--e.g., u measures 

the number of u-quarks minus the number of u-antiquarks. The baryon number, hyper- 

charge, and electric charge are then given by : 

i (~ + ~ + ~) 
(6.3.5) { : S 

(6.3.6) i ( G + ~ _ 2 s )  = - s +  ~=i 

(6.3.7) i (2~-~ s) =A 6=~ - u- 

The three generators for infinitesimal isospin transformations--i.e., 8U(2) trans- 

formations applied to U ~ and D e --are as follows: 

(6.3.8) 

i (u~)e De~e) 
~i : - i + 

%= }(oe< 
i (ue6 _ ~<) 

~3 = - ~ e 

and the total isospin operator ~2 is defined by 

(6.3.9) ~2 ~ 2 = (I I) + (I2)2 + (I3)2 

A A 
The operators I 1 , 12 , and 13 are the twistorial operator analogues of the three 

Pauli matrices. It is not difficult, incidentally, to verify that formula (6.3.9) 



agrees with equation (5.5.8). 

form 

84 

I3 can be written, using (6.2.6), in the Note that 

(6.3.10) I3 = Y - ' 

whence, after some elementary algebra, we derive the famous Gell-MannnNishijima 

relation, 

(6.3.11) Q = {3 + ~/2 

6.4 Mass and Spin for Three-Twistor Systems. 

In the case of three twistors the operator M 13 only has three independent 

components, and thus it is convenient to introduce, in this case, an operator M. 
1 

defined by 

1 ~ijk~Jk (6.4.1) ~i = Y ; 

and similarly, we define 

(6.4.2) M i 1 '" = ~ El3kMjk 

Using equation (5.3.5) it is then an elementary exercise in SU(3) algebra to verify 

that the mass-squared operator ~2 is 

(6.4.3) ~2 ^ i = 2MiM 

Thus the mass-squared operator is given by a sum of three partial mass-squared 

operators, each of which is the mass-squared operator for one of the three two- 

twistor subsystems. 

The operators ~qi and M i also figure into the three-twistor expression for the 

spin operator. If, as was done in Section 5.5, we denote the tracefree SU(3) 

generators by EJ i.e we put 
i ' "' 

(6.4.4) ~j ~^j 1 ~j ~^k 
i = ZiZ~ - ~ OiZkZc~ 

then the following expression--which was first formulated explicitly by G.A.J. Spar- 
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ling, in 1975~can be derived for the total spin operator: 

(6.4.5) ~2 1 ~2 3 ~ + 1 ~i~j -2 i^ ~j~k 
= ~ + ~ ~ EjE i - 2m M MjEkE i 

It is worth noting, incidentally, that the baryon number operator B , defined by 

1 ~i 
(6.4.6) ~ : -~ i + 2 , 

with E j = Z.~Z j , can, if one desires, be expressed in terms of the tracefree genera- 

tors E j with the help of the following rather peculiar result: 
l 

6.4.7 Theorem (Perje~s). The baryon number operator B , when acting on mass- 

eigenstates, can be expressed in the alternative form, 

^ ~j 
(6.4.8) B = 2m-2M±M + 2 

3 l 

Proof. Let us first demonstrate that 

i^ J  i%z i : 0 (6.4.9) M MjE i 

To see this, note that M Z i satisfies 

i 
(6.4.10) M ZiI ~ = 0 , 

since three ~'s are being skewed over in (6.4.10). Similarly, one verifies that 

( 6 . 4 . l l )  ~ ~ i z ~  = O. 

Equation (6.4.9) follows from equations (6.4.10) and (6.4.11) at once, since if a 

pair of quantities are annihilated, respectively, by I ~ and I ~ , then they must 

necessarily annihilate each other. Substituting E~ = E~ + 1 j k l i ~ 6iE k into equation 

(6.4.9), the desired result follows immediately.[] 

Theorem (6.4.7) is really a bit of an aside, since it has to do more with 

baryon number than with mass or spin. It does show us, however, that ~2 can be ex- 

pressed entirely in terms of the operators M. , M i , and E~ . Since the baryon 
1 1 

number operator is also built up out of these operators, it should not come as a 
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total surprise that a certain connection automatically holds between B and S : 

6.4.12 Theorem. If a twistor function f(Z~) is in an eigenstate of B and 

then the eigenvalues B and S must satisfy: 

(6.4.13) 3B - 2S = 0 (mod 2) 

Proof. This result is most easily established if one examines the spinor- 

~ l ^  
coefficient structure associated with f(Z ). The baryon number is ~(~-~), where 

denotes the number of ~-coefficients and ~ denotes the number of ~-coefficients. 

i^ 
The spin, on the other hand, must be of the form ~(~+~) [mod i], and in fact must 

1 ^ 
lie in the range 0 < S < ~(~+~). These results immediately imply (6.4.13). [] 

Equation (6.4.13) says that particles with 3B odd are fermions, and 3B even 

are bosons. This result is, of course, consistent with the way things work in the 

real world. It should be stressed that equation (6.4.13) follows quite trivially 

if one assumes the quark model. Here, however, we have not assumed the quark model 

(at least in the literal sense) and consequently the relation 3B = 2S (mod 2) is a 

result of a somewhat less trivial character. 

6.5 The SU(3) Casimir Operators. 

In order to belong to a definite SU(3) multiplet a twistor function f(Z~) must 

be in an eigenstate of the two Casimir operators C2 and C3 defined in relations 

(5.5.14). If f(Z?) is indeed in such an eigenstate, then the associated field 
1 

multiplet will be an irreducible SU(3) tensor. It should be noted that irreducible 

SU(3) tensors can--after a judicious application of SU(3) epsilons--always be ex- 

pressed, in a canonical way, as tracefree tensors which are symmetric both on 

their upstairs indices as well as their downstairs indices. Irreducible SU(3) 

multiplets can, accordingly, be labelled by a pair of integers {l,~} giving the 

number of indices of each type. Now the Casimir operator C2 and C3 are themselves 

rather awkward to work with in practice. Their eigenvalues, however, can be ex- 

pressed very simply in terms of ~ and ~, according to the following formulae: 
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(6.5.1) 

1 2 
C 2 = ~ (I 2 + ~ + I~/ + 31 + 3~) 

C 3 = 2~(I-D) (21+~+3)(I+2Z+3) 

The dimension of the irreducible multiplet {I,~} is given by the formula 

1 
(6.5.2) dim{1,Z} = ~ (I+1) (~+i) (i+~+2) , 

and one can easily check that {i,i} gives an octet, {3,0} and {0,3} give 

decimets, {2,2} gives a 27-plet, and so on. It would be amusing to find a pair of 

operators whose eigenvalues gave I and ~ directly. 

Since C2 and C3 are built up out of the traeefree twistor internal SU(3) gen- 

erators, one might anticipate that certain relationships must necessarily hold be- 

tween i, ~, B, and S. These are given as follows: 

Theorem (Perj~s and Sparling). Let us define the quantities d, 8, 6.5.3 

and y by: 

21+~+3 I+2~+3 1-D 
(6.5.4) ~ : 3 B - 3 Y = 3 

Then the following 

(6.5.5) 

inequalities must hold: 

i + IZ 12 
(h-B - ~ _ ~) >_ (s + ~-) 

1 12 12 
(~B + B + ~) >_ (s + ~) 

1 +12 12 
(~ B + y _ y) < (S + ~) 

Although its proof (which will be omitted) is rather long and involved, this 

result can be verified quite easily by examining the spinor coefficient structures 

associated with various multiplets, These inequalities impose severe limitations 

on the spectrum of allowable multiplets available within a three-twistor scheme. 

In many cases, if B and {~,~} are specified, then (6.5.5) will in fact determine S 

uniquely~ For example, for a B = 1 octet (with {I,~} = {1,1~) one obtains ~ = 2, 

= 2, y = 0 ; and after a short calculation one deduces from (6.5.5) that S = 1/2. 
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We list below the results of several such calculations: 

(6.5.6) 

B {I,U} dim{l,p} S 

i {i,i} 8 i/2 

i {3,0) i0 3/2 

1 {4,1} 35 3/2 or 5/2 

o {o,o} i o 

0 {i,i} 8 0 or 1 

0 {2,2} 27 O, l, or 2 

i/3 {i,0} 3 i/2 

These results show that our three-twistor scheme, although adequate for the descrip- 

tion of low-lying baryons, will not suffice for a general description of hadrons-- 

this is simply because one does, in fact, observe in nature various hadronic multi- 

plets whose quantum numbers are incompatible with those listed above. One observes 

baryon octets with S > 1/2 ; one observes baryon decimets with S > 3/2; one observes 

baryon singlet states (which are not allowed in a three-twistor scheme); one ob- 

serves an octet of S = 2 mesons; and one observes (as part of a mixed state) an 

S = 1 meson singlet: none of the states just mentioned are compatible with a descrip- 

tion based entirely on three twistors. Accordingly, our framework must be general- 

ized so as to account for these additional states. In the next chapter we shall 

outline an extended scheme (based of functions of six twistors) which exhibits a 

flexibility sufficient to enable it to account for a greater variety of hadronic 

states--in particular, it admits the various states mentioned above which are 

ruled out when only three twistors are considered. 

6.6 The Absence of Color Degrees of Freedom. 

One point which needs to be stressed here, which has not been mentioned yet, 

concerns the role of "color" SU(3) in hadronic structure. In the standard "naive" 

quark model, one assumes that baryons are effectively bound states of three quarks. 

Now, regardless of the nature of the forces binding the quarks together, the re- 

quirements of Fermi statistics demand that the quarks have in addition to their 
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flavor degrees of freedom (viz.: up, down, and strange ...) also three colorz' at 

their disposal. Thus, according to the color hypothesis there are nine distinct 

kinds of light quarks--each labelled by a color and a flavor. Within a baryon the 

quarks are put into a color singlet state, i.e., into a state which is totally 

antisymmetric with respect to its color SU(3) indices. With this assignment baryons 

then automatically possess the correct flavor and spin symmetries (i.e., totally 

symmetric with respect to clumped flavor SU(3) and spin indices). The color hy- 

pothesis can then be taken one step further. An octet of color SU(3) bosons 

(called "colored gluons") is introduced, and it is hypothesized that the sub- 

hadronic quark binding forces are due to the exchange of virtual gluons--the resul- 

ting theory goes by the name of "quantum chromodynamics". There is a certain 

amount of evidence in favor of QCD, but this evidence rests on such a plethora of 

assumptions that--to the critical eye--it is not very convincing. The theory's 

chief merit is its elegance and its aesthetic simplicity. 

Within twistor theory baryons are not assumed to be in any literal sense built 

up out of bound states of quarks, and consequently the color hypothesis is unneces- 

sary. Of course, if there are no color degrees of freedom, then there are no 

colored gluons--and thus it is not obvious at all how one might begin to formulate 

a theory of strong interactions in twistor terms. There are several routes that 

might be followed towards this end. One approach would be to study twistor 

(2) 
diagrams , or appropriate generalizations thereof, and try to build up reasonable 

expressions for hadronic scattering implitudes. In this connection one would in- 

evitably anticipate links with Regge theory. Another route to take, perhaps of a 

more speculative character, would involve looking at deformations (3) of the complex 

analytic structure of the space of three twistors (or, as it may turn out, 

suitably related higher dimensional spaces). Although it is not at all evident 

how one would go about describing strong interaction phenomena in terms of such 

deformations, the utility of such an approach has been demonstrated admirably in a 

variety of non-linear problems (Penrose 1976; Ward 1977a and 1977b; Atiyah and 

Ward 1977; Atiyah, Hitchin, and Singer 1977; Hartshorne 1978; etc.) and it is not 
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unreasonable to propose that hadronic interactions might be amenable to treatment 

by means of this sort. Finally, any approach to strong interaction physics re- 

quires a detailed knowledge of the "internal" geometry of hadrons. In Chapter i0 

some of the material necessary towards this end is presented; but clearly, in addi- 

tion to this, knowledge of a much more specific character is needed. It is worth 

noting that an operator analogue of the center of mass twistor described in 

Section 3.5 can be constructed (Hughston and Sheppard, 1979), and in addition to 

the center of mass operator for the three-twistor system as a whole, in the case 

of hadrons, we also have three "partial" center of mass operators constructed from 

the three two-twistor subsystems. It is not unlikely that these operators should 

play a significant part in understanding various aspects of the structure of hadrons. 

In particular, the role of the center of mass operator in determining the proper- 

ties of the magnetic moments of hadrons now seems to be firmly established. 

Chapter 6, Notes 

i. For standard discussions of the quark model and SU(3) see, for example, 

Gell-Mann and Ne'eman (1964), Dalitz (1966), Feld (1969), and Feynman (1972). 

2. Twistor diagrams were introduced in Penrose and MacCallum (1972), and are 

discussed at length in Penrose (1975a, pp. 330-369). For additional discussion 

see, for example, Sparling (1974), Sparling (1975), Hodges (1975), Harris (1975), 

Ryman (1975), and Huggett (1976). A number of articles on twistor diagrams have 

been written by A.P. Hodges for Twistor Newsletter, and in the same reference one 

can find an article by S.A. Huggett and M.L. Ginsberg discussing the cohomological 

interpretation of certain classes of twistor diagrams. In Popovich (1978) one finds 

a good summary of many of the heuristic aspects of the analysis Of twistor diagrams 

for hadronic, leptonic, and semileptonic processes. Although we shall not be en- 

tering into a discussion of the matter here, it is perhaps worth noting that there 

exist a number of interesting formal correspondences between twistor diagrams and 

duality diagrams. A useful reference on dual theory is Jacob (1974). Basic 
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references to duality diagrams include Harari (1969), Rosner (1969), Neville (1969), 

and Matsuoka et al (1969). Higher order duality diagrams, which also fit into the 

twistor framework [where "quark loops" correspond to "helicity flux loops" in 

twistor diagrams], are discussed in Kikkawa et al (1969). There is something 

very curious and combinatorial about the theory of duality diagrams, suggestive of 

some of the principles involved in spin-network theory [Penrose 1971a and 1971b; 

also see the Twistor Newsletter articles on spin-networks by S.A. Huggett and 

J.P. Moussouris], and more investigation in this area is certainly called for. 

3. Standard references for the theory of deformations of complex analytic struc- 

tures include Kodaira and Spencer (1958), K0daira and Spencer (1960), and Morrow 

and Kodaira (1971). It is first suggested in Penrose (1968b) that gravitation is 

in some sense due to a shift in the complex analytic structure of twistor space. 



CHAPTER 7 

MESONS, RESONANCES, AND BOUND STATES 

7.1 The Low-Lying Mesons. 

Among the observed low-lying meson states two nonets stand out as particularly 

striking. These include a spin zero nonet of negative intrinsic parity, and a spin 

one nonet of negative intrinsic parity. At the level of the naive quark model, 

these nonets can be represented by quark-antiquark pairs. Since quarks and anti- 

quarks are both spin 1/2, pairs of such states can be either spin 0 or spin i, 

assuming no orbital angular momentum (cf. Section 7.4) between the quarks. In 

Table 7.I one finds a list of the relevant states comprising these nonets, together 

with the hypothesized quark structure for each case: 

Table 7.I 

The Quark Structure of the Low-Lying Mesons 

+ uA~A + (A~B) 7T Q u 

To UAUA _ dA~A QO u (A-B)u - d (A~B) 

~- dAuA p- d (AuB) 

+ A- K +* u (AsB) 
K u s A 

K ° dAsA K °* d (AsB) 

s A s 

- A- K-* (A-B) 
K s u A s u 

A- dA~A (A-B) d (A~B) u u A + - 2sAs 0J u u + a 

~' uAuA + dad A + sAsA ~ s (AsB) 

Each nonet has a pair of I = 0 members. For the spin 0 nonet we have D and 

~' , and for the spin i- nonet we have w and 4- This is because each nonet is com- 

posed of an SU(3) octet and an SU(3) singlet. The octet has an £ = 0 state, and 
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the singlet has I = 0; this makes for two I = 0 states altogether. It is possible 

that the observed I = 0 states are mixtures of pure octet and singlet components. 

No one knows what the precise principles are which govern the phenomenon of 

mixing: therefore, the quark structures for these states as listed in Table 7.I 

are to some extent ad hoc. If we write 

(7.1.1) 

= cos0{8} + sin@{l} 

N' = -sin@{8} + cose{l} 

and 

(7.1.2) 

¢ = cos@{8} + sine{l} 

= -sin@{8} + cos@{l} 

and assume the Gell-Mann mass formula (cf., however, Section 5.3) then we obtain 

the fo~lowing values for the mixing angles: 

(7.1.3) 

i 

@lin equad 

-24±1 ° -ii±i ° 

38±1 ° 40±1 ° 

where eli n is the angle obtained if Gell-Mann formula is assumed to be linear in 

the meson masses, and 0 is the result obtained in the quadratic case. Nature 
quad 

is being very elusive about the whole matter. In Table 7.II a number of the basic 

properties of the low-lying mesons are summarized. In most cases only those decay 

modes are listed for which a definite lower bound on the fraction is known. For 

further information the reader should consult the most recent tables compiled by 

the Particle Data Group. The data here comes from the 1978 lists. 
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Particle 

+ 
% 

%o 

Table 

Mass 

139.5669(12) 

134.9626(39) 

7.II: Properties of the Low-Lying Mesons 

Mean Life 
or Decay 

FullWidth Modes 

2. 6030 (23) xl0 -8 ~+~ 

sec e+~ 
~+~y 

e4-O%o 

e+Vy 

0.828xi0 -16 yy 

sec ye+e - 
e+e-e+e - 

Fraction 

~100% 
1.267 (23) xlO -4 
1.24 (25)xi0 -4 
1.02(07)x10 -8 
2.15 (50)xlO -8 

98.85(O5) 
1.15(05) 
3.32X10 -5 

+ 
K- 

K° t ~ o 

K ° 
S 

548.8(6) 

493.668(18) 

497.67(13) 

0.85 (12)keV 

1.2371(26) xl0 -8 

sec 

0.8923(22)xi0 -I0 

sec 

YY 
%oyy 
3%0 
%+%-%0 
%+%-y 

e+e-y 
e+e-~+% - 
D+H- 

Z+y 
%+%0 
%+%+% - 
%+%0%0 

~+~ ~o 

e+~) T O 
~+~y 
e+~%o% o 

e+~%+z - 
U+~ ~+%- 

e+~ 
e+~ y 
9T+'rroy 
%+%+~-y 

e%)~T Oy 
e+e-%+ 
~+~e+e - 
e+~ e+e - 

%0%0 
~+~--y 

38.0 
3.1 
29.9 
23.6(6) 
4.89(13) 
0.50 (12) 
0.i (i) 
2.2(8)xi0 -5 

63.50(16) 
21.16 (15) 
5.59(03) 
1.73(05) 
3.20(09) 
4.82 (05) 
5.8 (3.5)xi0 -3 
1.8 (+2.4) (-0.6)x10 -5 
3.90 (15) x10-5 
0.9 (4)x10 -5 
1.54 (09)xi0 -5 
1.62 (47) xl0 -5 
2.75 (16)x10 -4 
1.0(4)x10 -4 
3.7(14)xi0 -4 
2.6 (5)x10 -7 
ii (3)xi0-7 
2 (+2) (-l)xl0 -7 

68.61(24) 
31.39(24) 
1.85(i0)xi0 -3 
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Particle 

o 
K L 

Mass 

Table 7.If (Continued) 

Mean Life 
or 

Full Width 

5. 183 (40) xl0 -8 

Decay 
Modes 

note: Ko o = 
s-KL 

0.5349(22)xi0 I0 h see -I 

[ Ko 
i and K°decay 50% into 

o and 50% into K ° 
KS L 

see Z°Z°T° 

~±~±~ 

T±eiv 

Ze~y 
Z+Z- 

TOzO 
~+~-y 

YY 
Z+U- 

Fraction 

21.5(7) 
12.39(18) 
27.0(5) 
38.8(5) 
1.3(8) 
0.203 
0. 094 (18) 
6 (2)x10 -5 
4.9 (5)x10 -4 
9.1 (I. 8) xl0 -9 

~' (958) 

p (770) 

w(783) 

~ (i020) 

957.6(3) < 1 MeV 

776 155(3) MeV 

782.6(3) 10.1(3) MeV 

1019.6(2) 4.1 (2) MeV 

r)T~ 
pOy 

~y 

YY 

Ty 
e+e- 
~ + ~  - 

]i+~[ -70 

~i+~i - 

T°y 

e+e- 

nY 

K+K - 

n7 

T°y 
e+e - 
U+~ - 

66.2 (1.7) 
29.8(1.7) 
2.1(4] 
2.0(3) 

~100% 
.024(7) 
.0043(5) 
.0067(12) 
(seen) 

89.9(6) 
1.3(3) 
8.8(5) 
.0076(17) 
(seen) 

48.6(1.2) 
35.1(1.2) 

14.7 
1.6(2) 
0.14(5) 
.031(1) 
.025(3) 

K (892) 892.2 (4) 49.5 (i. 5) MeV Kn -i00 
Ky .15(7) 
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7.2 The w-~ Problem. 

Several methods have been suggested for describing the low-lying mesons in 

twistor terms. Evidently, one requires a scheme of considerable generality, since, 

in addition to the low-lying states, there are many many other mesons as well. 

One method which has been proposed is to treat mesons as holomorphic functions of 

^iA 
three twistors and to consider the spinor coefficient structure ~ ~jA' This 

spinor coefficient structure produces a multiplet of states @~, by means of the 

contour integral formula 

(7.2.1) ~iA /Q AAi 
jA,(X) = x ~ ~A,jf(Z~ )a~ 

By taking the divergence of @iA jA' we obtain a set of spin 0 mesons, and by taking 

the divergence-free part of @~, we obtain a set of spin 1 mesons. 

Unfortunately, this procedure leads to two grave difficulties. The first 

problem is concerned with the spin 0- mesons. These mesons are supposed to exhibit 

negative intrinsic parity. Now in the naive quark model there is no problem, be- 

cause quarks have P = i, and antiquarks have P = -I. Therefore, if they are in an 

S-state (i.e., no orbital angular momentum) then the combined pair will automatical- 

ly have negative intrinsic parity. If one considers the spin 0- SU(3) singlet 

state produced in (7.2.1), then it will be observed that what is actually being 

produced is the derivative of the field ~ defined by 

(7.2.2) ~(x) =/~xf(Z~)A~ 

In other words, we have the formula 

(7.2.3) ~ ,(x) = iVA,~(x) , 

which follows at once as a consequence of (7.2.1), (7.2.2), and (5.3.2). Since 

@(x) exhibits no quark structure whatsoever in its associated contour integral 

formula, it is very difficult to make a case for its being of negative intrinsic 

parity. The second problem is concerned with the spin i- mesons. Here matters are 

even worse! According to formula (7.2.3), a spin one singlet state simply does not 
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exist within a three,twistor framework (1) . This result corroborates Theorem 

(6.5.3), and, in particular, formulae (6.5.6). Thus, as matters stand we cannot 

account for both ~ and 4- 

7.3 Mesons as Quark-Antiquark Systems. 

So, back to the drawing board. In Section 6.6 we discussed the fact that 

baryons need not be treated in any sense as bound states of quarks--at least, inso- 

far as the low-lying baryons are concerned. With mesons the state of affairs is 

rather different, and indeed quite a reasonable picture of the low-lying mesons 

can be built up by following the quark model as closely as possible. In particular, 

the defects mentioned in the previous section can be eliminated. 

For a single quark state, if such states exists, the relevant contour integral 

formula is 

(7.3.1) qAi(x) = /Qx~Aif(z)az , (i = 1,2,3) , 

and for antiquarks the relevant formula is: 

(7.3.2) 
A' ~ A' 

qi (x) = xZi f(z)a~ 

Now in order to characterize a bound state of a quark and an antiquark we require 

a function of six twistors f(Z.,Z.) , where three of the twistors refer to a quark 
11 2 l 

and the other three refer to an antiquark. 

To simplify the notation in what follows, let us write 

(7.3.3) 

~ = ( A ,~A,i) 

Z~ = (sA ,SA,i) 
2 i 

for the spinor parts of Z~ and Z~ , and write 
i I 21 

(7.3.4) 

{ ~Ai = -~/~Ai 

~Ai = -~/~Ai 

for the associated spinor operators. Then for a quark-antiquark system we could 
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take the spinor coefficient structure 

^~i 
(7.3.5) ~ ~A'j 

On the other hand, we might equally well take 

(7.3.6) ~A,j~ Ai 

Which of the two do we take? Or do we, perhaps, take some linear combination? 

What a dilemma. 

BuG wait! There is one quantum number which we have not yet taken into ac- 

count: namely, the charge conjugation number. Charge conjugation is defined to be 

the operator which changes particles into antiparticles, and vice-versa, but 

whilst at the same time preserving handedness. Evidently we have ~2 = i; thus 

for eigenstates of C we must have C = ±i for the eigenvalue. Selection rules in 

strong and electromagnetic processes allow one to empirically determine C for a 

variety of particles; for example, the photon, the Q-meson, the w-meson, and the 

~-meson all have C = -i; and the pion, the ~-meson, and n'-meson all have C = 1. 

(2) 
Now, let us define the following operators : 

(7.3.7) 

I -I^A'^Ai i -I^A'^Ai 
= ' = < PA 8 

-I^A' -I~A' 

[ ~Ai = -K PA ~A'i ' ~Ai = -< A ~A'i 

Under charge conjugation we have the following transformations in the spinor co- 

efficient structure: 

(7.3.8) 

A^Ai A 
C~ = di = 

^ A AAi A A = ~Ai 
C~ i = ~ C~ i 

(7.3.9) 

~A'i = ~i i 

^ A' ^A'i ^ A' = ~A'i 
C~ i = ~ C~ i 

These formula interchange right-handed quarks with right-handed antiquarks, and 
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interchange left-handed quarks with left-handed antiquarks, as desired. Note, 

however, that they do not in any way intermingle the Z~ twistors with the Z~ 
i i 2 i 

twistors. 

Now we shall consider the spinor coefficient structure 

(7.3.10) ~iA~B ~iA B j - ~ j ' 

where, for convenience, we have made everything left-handed. This structure is 

not in an eigenstate of C , for when C operates on (7.3.10) we get 

A~iB ~AAiB 
(7.3.11) ~.~ - b.~ , 

3 3 

which is clearly quite distinct from (7.3.10). 

However, suppose we split (7.3.10) into its spin 0 and spin 1 parts. Then 

we have 

^iA ^iA 
(7.3.12) @ BjA - @ djA ..... spin 0 , 

and 

(7.3.13) ~i(A~B) _ ~i(A B) ..... spin 1 

3 ] 

Behold! The spin 0 part is in an eigenstate of C with C = i, and the spin 1 

part is in an eigenstate of C with C = -i. These eigenvalues are indeed the ob- 

served eigenvalues. Evidently then, the minus sign taken in the superposition 

(7.3.10) is the correct choice. 

It should be noted that the charge conjugation number selects out the spinor 

coefficient structure (7.3.10) quite uniquely for the low-lying mesons. If, for 

instance, one had chosen ~iA B iA~B • or ~ , or any linear combination of these two 
3 j 

expressions, then, as a short calculation will reveal, the wrong charge conjugation 

numbers would have emerged. 

7.4 Orbital Angular Momentum. 

In order to pursue the matter of excitations of hadronic systems it is neces- 

sary as a preliminary measure to make a few remarks concerning orbital angular mo- 
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mentum. Suppose we consider a two-point field ~(x,y) satisfying the massive wave 

equation individually with respect to x a and ya , with the same mass: 

(7.4.1) 

1 1 1 
(V a V a + m 2) @ (x,y) = 0 , V a = ~/~x a 

2 2 2 
(V? a + m 2) @ (x,y) = 0 , Va = ~/~ya 

Furthermore, let us suppose that @(x,y) as a whole is in a definite state of total 

mass--that is to say, we have 

1 2 I 2 
(7.4.2) [(V + ? ) (?a + va) + M 2] ~ (x,y) = 0 , 

a a 

where M is the total mass. Let us denote by V the subspace x = y , and write PV 

for the restriction down to V. Thus, we have, for example, Pv@(X'Y) = ~(x,x). 

We define L by the relation a 

1 2 ^ 

(7.4.3) L a = i(Va - V a) 

Note that, on account of equations (7.4.1) and (7.4.2) we obtain: 

(7.4.4) ~. ~a @(x,y) : (4m 2 - M 2) @(x,y) 
a 

With this information at our disposal, the following result can now be established: 

7.4.5 Theorem. A two-point massive state satisfying equations (7.4.1) and 

(7.#.Z) has a definite total spin s if and only if the expression 

AA 
(7.4.6) Pv [LaLb "'" ~(x,y)] =: ~ab...(x) 

is non-vanishing if L occurs s times, and vanishes otherwise. 
a 

Proof. It is straightforward to verify that if @(x,y) satisfies (7.4.2) then 

A 
if we apply L to @(x,y) any number of times the resulting state also satisfies 

a 

equation (7.4.2). Moreover, if we assume that @(x,y) is Fourier analyzable, then 

we have the formula 
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1 2 

(7.4.7) VaPv@(X,y) = Pv(Va + Va)@(x,y) , 

from which, using (7.4.2), we obtain: 

(7.4.8) (Vc Vc + M2)@ab...(x) = 0 

In order to establish that @ab... is in a definite spin state we must verify that 

it is symmetric, tracefree, and divergence-free. It is, of course, symmetric. To 

prove tlhat it is tracefree one uses (7.4.4) along with the assumption that (7.4.6) 

vanishes if evaluated with any number of occurrences of L other than s. Finally, a 

the fact that it is divergence-free follows from (7.4.7) in combination with the 

identity 

1 2 
(7.4.9) (V a + ~Ta)~.a~(X,y) = 0 . [] 

According to Theorem 7.4.5, the operator L acts as a "projection operator" a 

for orbital angular momentum. It can also be used in our twistor contour integral 

formulae. For if a two-particle wave function f(Z~ ,Z~) is in a definite state 
11 21 

of orbital angular momentum between the two subsystems, then in evaluating the 

associated contour integral we must apply the operator 

(7.4.1o) £ = ~ - 
a i a 2 a 

an appropriate number of times before applying the restriction operator Px" Note, 

1 
in particular, that if we denote by Px the operator which restricts Z d. down to 

i l 
AA' 2 AA' 

x , and we denote by py the operator which restricts Z. ~ down the y then we 
21 

have the relation 

1 2 1 2 12 ^ 
(7.4.11) i(Va - Va) PxPYf(Z'Z)l 2 = PxPyLaf(Z'Z)l 2 ' 

which establishes the connection between (7.4.3) and (7.4.10). 

The discussion above has been limited to the case where the two masses of the 

subsystems are identical. It is not especially difficult to generalize all the 

relevant formulae so that they apply when the two masses are distinct. In the 

sections which follow L is to be understood as being defined in such a way as to a 
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Non-strange Mesons 

State IG(jP)Cn 

i- (0-) + 

n 0+(0-)+ 

p(770) 1+(1-) - 

~(783) O-(Z-)-  

+M(940-953) 

~'(958) 0+(0-) + 

~(980) I-(0+) + 

S*(980) 0+(0+) + 

÷H(990) 

@(i020) 0 (i) 

+M(i033)-i040) 

÷~N(1080) O+(N) + 

AI(II00 ) i-(i+) + 

÷M(I150-I170) 

B(1235) i+(i+) - 

+p'(1250) I+(i-) - 

f(1270) 0+(2+) + 

D(1285) 0+(A) + 

~(1300) 0+(0+) + 

A2(1310) 1-(2+) + 

E(1420) 0+(A) + 

÷X(1410-1440) 

f'(1515) 0+(2+) + 

+FI(1540 ) I(A) 

p' (1600) i+(i-) - 

A3(1640 ) 1 (2)+ 

Table 7.III: Mesons and Meson Resonances 

State IG(jP)c 
n 

~(1670) 0 (3) 

g (1680) 1+(3-) - 

+X (1690) 

÷A 4 (1900) 1 

÷X (1900) 1-(4+) + 

S (1935) 1 

h (2040) 0+(4+) + 

T (2190) 1 + (3) 

U(2350) 0+(4+) + 

÷NN (2360) 1 

÷NN (1400-3600) 

+X (1900-3600) 

+ - 
+e e (1100-3100) 

+X (2830) 

~(3100) 0-(I-)- 

X(3415) O+ (0+) + 

÷X (3455) 

X(3510) 0+(A) + 

X (3555) 0+(N) + 

X(3685) 0 (i) 

~ (3770) (i) 

÷~ (4030) (i) 

$ (4415) (i) 

T (9500) (i) 

T (i0060) (i')- 
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Table 7.III (Continued) 

Strange Mesons 

State l(J P) 

K 1/2 (0-) 

K* (892) 1/2 (i-) 

Q1 (1280) 1/2 (i +) 

÷Q2 {1400) 1/2 (i +) 

÷K'(1400) 1/2(0-) 

k(1400) 1/2(0 + ) 

K*(1430) 1/2(2 + ) 

÷KN(1700) 1/2 

L(1770) I/2(A) 

K*(1780) 1/2(3-) 

+K*(2200) 

+I(2600) 

An arrow (÷) denotes a state which is not 

to be regarded as yet well-established. 

Charmed Mesons 

State I (JP) 

D (1870) 1/2(0-) 

D*(2010) 1/2(i-) 

+F (2030) 

÷F* (2140) 

............................................... 

Notation : 

I = isospin 

G = G-parity 

J = spin 

P = intrinsic parity 

C = charge conjugation parity 
n 

N = "normal" parity (0 + , I- , 2 + , 3- ...) 

A = "abnormal" parity (0- , 1 + , 2- , 3 + ...) 
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take into account this generalization, when necessary. 

7.5 Excited Meson States. 

In this section we shall investigate the possibilities of describing "excited" 

meson states in twistor terms. Many meson resonances are known, and in Table 7.III 

the reader will find a list of the currently observed states (Particle Data Group, 

1978). One approach to understanding meson excitations is to treat these states as 

quark-antiquark pairs with units of orbital angular momentum between the quark and 

the antiquark. Certain features of the resulting spectrum are not sensitive in any 

significant way to the specific nature of the "binding forces" between the quark and 

the antiquark, and it is upon these features that we shall concentrate for the 

moment. We cannot, for example, say anything about "radial excitations", since 

these depend rather critically on the type of binding that is involved. 

(JP)c n SU(3) ,L I = i I = 0 I = 1/2 

(o-)+ 

(i) 

(i +) - 

(o+) + 

(i+) + 

(2+) + 

{91,o + } 

{$3,o +} 

{£1 ,i-} 

{93,1 - } 

{9 3 ,i-} 

{93,1 - } 

Q(770) 

B(1235) 

6(980) 

AI(II00) 

A2(1310) 

i 

0J (783) ,~ (1020) 

S (980),8(1300) 

D(1285),E(1420) 

f(1270),f' (1515) 

K 

K* (892) 

K(1400) 

Q 

K*(1430) 

Table 7.IV 

The Observed Meson Nonets 
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In Table 7.IV we list several of the observed meson "nonets". Quotation marks 

because in some cases the evidence is a bit shaky. Only one well-established state 

in the (i+) - multiplet. In the (i+) + multiplet the spin-parity of E(1420) is not 

known definitely--although it is known to be "abnormal" (i.e., 0-, 1 +, 2-, .0., 

etc.). There are various other problems, as well. Nevertheless, if taken at face 

value the picture presented in Table 7.IV is quite consistent with the notion that 

several of the observed excited meson states are obtained by adding in one unit of 

orbital angular momentum to the bound quark-antiquark system. 

Let us consider first the C = +i states. The orbital angular momentum projec- 

tion operator that must appear in the spinor coefficient structure is 

^AA' ^Ai A' ^Ai A' 
(7.5.1) L = d di - ~ ~i ' 

in accordance with formula (7.4.10). In what follows it is convenient to work with 

the completely "left-handed" operator 

AB ^AA'^B 
(7.5.2) L = L PA' 

From equation (7.4.9) it follows that L AB is symmetric on the indices A and B. Now 

it is an elementary exercise to verify that both ~AA' and L AB are invariant under 

the charge conjugation transformations (7.3.8) and (7.3.9). Therefore, the spinor 

coefficient structure 

(7.5.3) 

is in an eigenstate of C = i. 

[~i(AsB) ^i(A B)]LCD 
j + ~ j 

Note that the choice of sign in (7.5.3) is opposite 

to that of (7.3.10). Let us introduce the convenient abbreviation 

(7.5.4) TiAB ~i(A B) ~i (AaB) 
= ~j + . 

] 3 

Then expression (7.5.3) can be reduced to three distinct spin states, as follows: 

(7.5.5) TiAB L .................... (0+) + 
-j AB 

(7.5.6) TiC(ALB) ................... (i+) + 
] C 
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(7.5.7) T~(ABLCD) ................. (2+) + 
3 

Now let us consider the C = -i case. If we define a quantity T by 

^iA 2i~ 
(7.5.8) T = a ~jA + ~ jA ' 

then the spinor coefficient structure that we desire is given by 

(7.5.9) TL AB ..................... (i+) - 

Here, of course, we use the fact that CT = -T , as can be readily verified. 

All four of the multiplets (7.5.5), (7.5.6), (7.5.7), and (7.5.9) have positive 

intrinsic parity. This is obtained as a product of the inherent negative intrinsic 

parity of the quark-antiquark system, and the negative parity of the single unit of 

orbital angular momentum. 

A very curious feature of the preceeding material is illustrated in the fact 

that all six of the multiplets (7.3.12), (7.3.13), (7.5.5)-(7.5.7), and (7.5.9) 

have the property of being antisymmetric under the interchange of the labels ~ and 

8- This would appear to be an outcrop of Fermi statistics. Note that at no stage 

have we actually imposed Fermi statistics--our spinor coefficient structures have 

been designed purely on the basis of phenomenological considerations. Nevertheless 

it does seem reasonable hereon out to insist--especially in the cases where the 

empirical data is scantly or ambiguous--that our spinor coefficient Structures (and 

afortiori, the associated twistor functions) exhibit appropriate statistical 

properties. 

In connection with charmed particles and the ~/J family one can pursue the 

matter of meson excitations one step further. For a single charmed quark it is 

necessary, apparently, to consider a function of four twistors transforming under 

the action of the group SU(4). Appropriate meson states can be built up as quark- 

antiquark pairs describable in terms of functions of eight twistors. This topic 

will be discussed elsewhere. 
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7.6 Baryon Resonances. 

In the case of mesons and meson excitations our twistor model does not differ 

all that much from the standard quark model. The principal significant difference 

lies in the lack of internal color degrees of freedom. These hypothetical color 

degrees of freedom, which would certainly be of relevance for dynamical processes, 

can be treated as insignificant insofar as certain general features of the meson 

spectrum are concerned--to that extent, therefore, we have an approximate agreement 

between ~wistor theory and the "old" theory. 

In the case of baryons and baryon excitations, however, our model does indeed 

differ in several substantial ways from the picture suggested by the standard naive 

colored quark model. Let me describe in loose physical terms the set-up that I en- 

visage before getting involved in details of a more technical character: 

As far as hadrons are concerned we hypothesize that there are, in nature, three 

basic "primitive" particle types. These are called quarks, diquarks, and triquarks. 

In addition, we have the corresponding antiparticles. A diquark is not in any 

sense to be regarded as a bound state of two quarks, nor is a triquark to be re- 

garded as a bound state of three quarks. Diquarks and triquarks are particle types 

quite distinct from quarks. Insofar as their internal constitution is concerned, 

quarks exhibit more or less the same degree of complexity as do diquarks and tri- 

quarks. The low-lying baryons are examples of triquarks. Many of the observed 

mesons are quark-antiquark bound states. It is not out of the question that some 

mesons are formed as diquark-antidiquark bound states, or possibly as other "exotic" 

combinations. We propose that many of the observed baryon resonances are quark- 

diquark bound states. These resonances can be formed, for example, as follows. We 

collide, say, a baryon and a meson. The antiquark component of the meson system 

interacts with the baryon triquark so as to produce a diquark. This leaves us, then, 

with a quark-diquark system. The quark-diquark bound state is unstable, and as .soon 

as the vacuum can produce a quark-antiquark pair the whole process reverses, and the 

resonant state disintegrates. Remarkably enough, this simple picture can account 
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for a wealth of data. 

In Table 7.V we summarize the known baryon excitation states, as catalogued in 

the Review of Particle Properties (4) . The reader cannot help but be amazed when 

confronted with this vast list. Here more than anywhere we have evidence for the 

rich internal structure of elementary particles. Many an hour can be spent musing 

over the intricacies of this table, where many a symmetry lies submerged and half- 

hidden, like precious shells half-hidden in the sand on a beach. Take care! What 

one moment we think is a flawless conch on closer inspection often proves to be but 

a piece of driftwood. 

Let us now examine what sort of multiplets are obtained in the case of quark- 

diquark bound states. Following the pattern of Section 7.3 we shall regard these 

states as functions of a pair of twistor triplets, using the notation (7.3.3) and 

(7.3.4). Thus for a quark-diquark system we must consider spinor coefficient struc- 

tures of the form 

(76.1) ~Ai~Bj~Ck 

^Ai where ~ refers to the quark, and ~Bj~Ck refers to the diquark. Now strictly 

speaking (7.6.1) is not correct, since we have not yet taken into account the proper 

statistical relations that should hold between the quark and the diquark. Since the 

quark is a fermion and the diquark is a boson, the spinor coefficient structure (as 

a whole) must he symmetric under the interchange of the labels ~ and ~. Therefore• 

we replace (7.6.1) with the expression 

(7.6.2) T± ± , 

where the plus sign is used for even orbital angular momentum, and the minus sign 

is used for odd orbital angular momentum. 

We shall find it convenient on occasion to introduce the index clumping conven- 

tion Ai = a, Bi = b, etc., and write 

_abe = ~+iBjCk 
(7.6.3) T± _ 

The indices a, b, c, etc., are often, by abuse of terminology, called SU(6) indices. 
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Table 7.V: The Baryon Resonance Spectrum 

Even Parity Odd Parity Undetermined Parity 

N(939)PII **** 

N(1470)PII **** 

N(1540)PI3 * 

N(1688)FI5 **** 

N(1780)PII *** 

N(1810)PI3 *** 

N(1990)FI7 ** 

N(2000)FI5 ** 

N(2220)HI9 *** 

N(1520)DI3 **** 

N(1535)811 **** 

N(1670)DI5 **** 

N(1700)SII **** 

N(1700)DI3 *** 

N(2040)DI3 ** 

N(2100)SII * 

N(2100)DI5 ** 

N(2190)GI7 *** 

N(2200)GI9 *** 

N(2650)II ii *** 

N (3030) *** 

N (3245) * 

N (3690) * 

N (3755) * 

A(1232)P33 **** 

,~(1550)P31 * 

A(1690)P33 *** 

A(1890)F35 **** 

A(1910)P31 **** 

,~(1950)F37 **** 

A(2420)H3 ii *** 

A(1650)831 **** 

A(1670)D33 *** 

A(1900)S31 * 

A(1960)D35 ** 

A(2160) *** 

A (2850) *** 

A (3230) *** 

A(III5)POI **** 

A(1600)POI ** 

A(1800)POI ** 

A(1815)F05 **** 

A(1860)P03 *** 

A(2020)F07 * 

A(2110)F05 *** 

A(1405)S01 **** 

A(1520)D03 **** 

A(1670)S01 **** 

A(1690)D03 **** 

A(1800)G09 * 

A(1830)D05 **** 

A(1870)801 *** 

A(2100)G07 **** 

A(2325)D03 * 

A (2010) ** 

A(2350) **** 

A(2585) *** 

E(II93)PII **** 

E(1385)PI3 **** 

E(1660)PII *** 

Z(1770)PII * 

Z(1840)PI3 * 

E(1880)PII ** 

E(1915)FI5 **** 

E(2030)FI7 **** 

Z(2070)FI5 * 

E(2080)PI3 ** 

E(1580)DI3 ** 

E(1620)Sll ** 

E(1670)DI3 ** 

E(1750)Sli *** 

~(1765)D15 **** 

~ (1940)D13 *** 

E (2000) Sll * 

~ (2100) GI7 * 

E(1480) * 

E(1670) ** 

E(1690) ** 

E(2250) **** 

Z(2455) *** 

E(2620) *** 

E ( 3 0 0 0 )  ** 

E(1317)PII **** 

E(1530)PI3 **** 

~(1672)P03 **** 

• (1630) ** 

(1820) ?13 *** 

Z (1940) ** 

Z (2030) ?l? *** 

Z (2120) * 

Z (2250) * 

E ( 2 5 0 0 )  ** 
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_abc _acb 
Note that we have the relation T± T± . Accordingly, we see that T abc = can be 

split into precisely two distinct parts, each of which exhibits definite Young 

tableau symmetry, as follows: 

abc (abc) 
(7.6.4) F± = T± , 

abc [ab]c 
(7.6.5) G± = T t 

A straightforward calculation shows that F~ bc has exactly 56 independent components, 

abc 
and that Gf has exactly 70 independent components. 

We see that our basic quark-diquark system splits into a 56 and a 70. To these 

supermultiplets we can then begin to add units of orbital angular momentum, and in 

this way produce the following set of supermultiplets: 

(7.6.G) {5__6,o+} , , {5_66,1-} , {5_!6,2 +} , {5_!,3-) .... 

(7.6.7) {70,0 + } , {70,1-} , {70,2 + } , {70,3-} .... 

We have put a prime, incidentally, on the supermultiplet {56,0+} ' , so as to 

distinguish it clearly from the more basic {56,0 +} triquark supermultiplet (spinor 

coefficient structure ~Ai~Bj~Ck) to which the low-lying baryons belong. 

JP , SU(3) N,A ~ ! A 

1/2- 82,12 

1/2- 84 

3/2- 82,12 

3/2- 84 

5/2- 84 

1/2- 102 

3/2- 102 

N(i535)Sil 

N (1700)Sii 

N (1520)D13 

N (1700)D13 

N (1670) DI5 

A (1650) $31 

A(1670)D33 

~(1620)SII 

E (1580) DI3 

E (1670) DI3 

(1765)D15 

(1750) SII 

A(1405)S01, A(1670)S01 

A(1870)S01 

A(1690)D03, A(1520)D03 

A(1830)D05 

Table 7.VI 

The Observed {70,1-} Baryon Supermultiplet 
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The evidence for the existence of a {5--6,0+} ' is quite good, including as 

nucleonic members the N(1470)PII and the A(1690)P33 (cf. below). Evidence for the 

{7--0,0 + } and {5-6,1-} is very tenuous, although it is not altogether implausible that 

these states should exist. The {7__0,1-} is almost completely well-established now, 

and we list the observed members of this supermultiplet in Table 7.VI. The {5__6,2 + } 

is reasonably well-established, with the following nucleonic content: 

104 7/2 + ........................ A(1950)F37 

104 5/2 + ........................ A(1890)F35 

(7.6.8) 

104 3/2 + ........................ A(1690)P33 (?) 

104 1/2 + ........................ A (1910) p31 

(7.6.9) [ 28-2 512+312 + ........................ N(1688)~15 
8 ........................ N(1810)PI3 

It is possible that the A(1690)P33 may include more than one resonance in or near 

the 1650-1900 MeV mass range, and in the assignments above it is presumed that one 

of these resonances belongs to the {5-6,0 + } , and another belongs to the {5-6,2+}. 

The evidence for higher supermultiplets is sparse and relatively ambiguous, 

but there is no doubt that a number of such supermultiplets do, in fact, exist. As 

for the {7_~0,0 +} and the {5_~6,1-} , we can only speculate. The model does indeed 

seem to imply the existence of these states, although one might envisage the possi- 

bility of some modification which would eliminate them. 

In addition to the supermultiplets listed in (7.6.6) and (7.6.7) one might ex- 

pect further states on the basis of radial excitations. As explained earlier, it is 

beyond our scope at present to make any definitive assertions on that score. These 

matters, it is hoped, will be pursued elsewhere. 
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7.7 The Deuteron. 

To conclude this chapter, we shall discuss briefly certain aspects of the ~ep- 

resentation of the deuteron (bound state of a proton and a neutron) in twistor 

terms. The properties of this particle are of considerable interest in a number of 

areas outside of elementary particle physics proper (e.g., astrophysics, nuclear 

physics, etc.) and thus it seems worthwhile to point out here that there is some 

scope for effectively handling the deuteron (and possibly other light nuclei) within 

the twistor framework. 

A B 
The proton has the spinor coefficient structure u u d B , and the neutron has 

A B 
the spinor coefficient structure d d u B . In order to consider a bound state of the 

two we must take a holomorphic function of six twistors f(Z~ ,Z~) and consider the 

spinor coefficient structure 

(7.7.1) T+ AB := uCd u(AdB)dDu ~ uCd u(AdB)dDu 

- 1 ICI 2 2 2 D 2 2C2 1 1 1 D 

Since the individual nucleons are fermions one uses T AB in conjunction with even + 

units of orbital angular momentum, and T AB in conjunction with odd units of orbital 

angular momentum. 

The deuteron is known to be predominantly S-state, i.e., zero orbital angular 

momentum; thus ~B is the primary contribution to the complete spinor coefficient + 

structure. There is, however, a small admixture of D-state into the ground state 

wave function of the deuteron. 

its electric quadr~pole moment. 

structure 

(7.7.2) 

This can be inferred from its magnetic moment and 

A D-state corresponds to the spinor coefficient 

TCD A B 
+ LcL D , 

is the orbital angular momentum projection operator. where LAB 

indices in (7.7.2) have been contracted so as to produce a state of spin l° 

complete spinor coefficient structure of the deuteron is then of the form 

Note that the spinor 

The 

~TAB _CD A B 
(7.7.3) % + + ~i+ LcL D , 
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where ~ and ~ are appropriate numerical coefficients, weighting the two contribu- 

tions. 

It is possible, in accordance with the general principles layed out in the 

previous chapters, to construct a set of holomorphic differential operators which 

act as observables for the deuteron. We require that f(Z~ ,Z~) be placed in an 
2 

eigenstate compatible with the spinor coefficient structure (7.7.3). 

Chapter 7, Notes 

i. The ~-~ problem was first pointed out by G.A.J. Sparling in early 1975. 

2. Much of the material in this section, as well as the next four sections, was 

formulated in collaboration with M. Sheppard. I would also like to express my 

gratitude to A. Popovich, who stressed the importance of charge conjugation to me, 

for numerous very useful discussions and suggestions in connection with the material 

described in this chapter. 

3. The constant < is m/~2 . The signs in these formulae have been chosen such 

that the momentum operator P is invariant under transformations (7.3.8) and 
AA' 

(7.3.9). 

4. Notation : N (1688) F15 _ 

~ ~ ~  twice the spin 

~ k  i sos pin (times 2 for N, A r and ~) 

\\\ partial wave 

~ n o m i n a l  m a s s  

~ p a r t i c l e  type (N, A, A, ~, Z, or ~) 



CHAPTER 8 

LEPTONS AND WEAK INTERACTIONS 

8.1 Properties of Leptons. 

There are eight well-known "old" lepton states. The names and symbols for 

these states are as follows: 

(8.1.1) 

e ..... the electron e + ..... the positron 

..... the muon ~+ ..... the antimuon 

..... the electron neutrino ~ ..... the electron antineutrino 
e e 

..... the muon neutrino ~ ..... the muon antineutrino 

In 1976 a new lepton state called the T-particle was discovered. It may also have 

a neutrino associated with it. There may be more leptons yet to be discovered. 

Perhaps the best understood of the four neutrino states is the electron anti- 

neutrino ~ This massless (or at least nearly massless) particle is emitted as a 
e 

companion to the electron in ordinary ~- radioactive decay. For example, the hy- 

drogen isotope tritium 1 H3 decays according to the scheme 

(8.1.2) 1 H3 --÷ 2He 3 + e- + ~ , 
e 

the products of the decay being an electron, an electron antineutrino, and a 

helium isotope. Another example is the decay of the 6 C14 isotope of carbon: 

(8.1.3) 6 C14 --÷ 7 NI4 + e- + ~e 

And indeed, even the neutron itself undergoes ~ decay: 

(8.1.4) N ----+ P + e + 
e 

Many examples of ~ decay are known and have been studied; almost all neutron-rich 

isotopes can undergo $ decay. The detection of the electron antineutrino was 

first achieved by Reines and Cowan (1953). A nuclear reactor was employed for the 

production of a suitable flux of electron antineutrinos, and they searched for the 

following reaction: 
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(8.1.5) ~ + P ----+ e + + N 
e 

In spite of the very low cross-section for this interaction the experiment emerged 

a success on account of the elegant techniques which were developed for the detec- 

tion of simultaneously produced neutrons and positrons. 

The electron neutrino ~e is emitted in the ~+ decay of proton-rich nuclei. In 

these decays one of the nuclear protons is converted into a neutron, with the emis- 

sion of a positron and an electron neutrino. The carbon isotope 6 CII decays by ~+ 

emission, for example, as follows: 

6 C l l  5 B + (8.1.6) -----+ ii + e + 
e 

A process closely related to ~+ decay is K-capture. In this case, instead of emit- 

ting a positron the nucleus grabs an electron from the lowest atomic electron shell 

(the K-shell). One of the nuclear protons is converted into a neutron, and an 

electron neutrino is emitted. An example of K-capture is found in the atom of the 

europium isotope 63Eu152 , which decays according to the following scheme: 

- ~Sm152(i -) 

(8.1.7) e + 63 Eu152 ' > ~e + 6 1 '. ) 62Sm152(0+ ) 

+ Y 

The K-capture results initially in a spin-parity I- excited state of the Sm 152 

nucleus; this nucleus then shifts its configuration to that of the 0 + ground state, 

with the emission of a photon (y) of a characteristic energy. This rather exotic 

europium decay was the decay analysed in the remarkable experiment of Goldhaber, 

Grodzins, and Sunyar (1958). This experiment led to the very curious conclusion 

that the electron neutrino is inherently in a state of negative helicity, i.e., 

spins in a left-handed fashion. This fact is a manifestation of the breakdown of 

space-reflection symmetry in weak interactions. 

Another example of K-capture decay occurs in the case of the radioactive iso- 

tope 1eAr 37 of argon: 
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- Ar37 o 17C137 (8.1.8) e + 18 - > e + 

The inverse of this reaction can, in principle, be used to detect electron 

neutrinos. The famous experiments of R. Davis and cowerkers were originally de- 

signed to show that V and ~ were indeed distinct types of particles. It was 
e e 

known that large fluxes of antineutrinos are emitted from nuclear reactors, and 

the question was whether those antineutrinos would initiate the inverse of the 

reaction cited above. The negative conclusion of this experiment showed that 
e 

is, at least in some sense, a distinct particle state from ~ A variant on this 
e 

experiment has led to the celebrated solar-neutrino problem. The reaction 

17 c37 Ar 37 (8.1.9) e ° + --÷ e- + 18 

can be used to detect electron neutrinos emitted from the sun. Although the 

reaction (8.1.9) is indeed observed, it is not entirely clear that it is sufficient- 

ly often observed to account satisfactorily for the neutrino flux anticipated on 

the basis of standard models of stellar structure. 

The muon neutrino and antineutrino are produced in the decay products of 

numerous elementary particles, perhaps most notably in the decays of the charged 

pions: 

(8.1.10) 7[ + + -----+ ]/ ~)]/ , IT- -----+ U-~)/ , 

these being the principal decay modes of the charged pions. These decay modes 

played a role in the experiment of Danby et al (1962) which showed that muon 

neutrinos are in some sense distinct both from ~e and ~e The neutrinos produced 

in the decay-in-flight of 7[+ particles were used to bombard nuclei, and a search 

was made for the following hypothetical reactions: 

(8.1.ii) ~ + (Z,A) --÷ (Z~I,A) + e ± 

Neither reaction was observed. A related experiment by Borer et al (1969) indi- 

cates that V is distinct from 5 They showed that the reaction 
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(8.1.12) ~ + (Z,A) --÷ (Z+I,A) + 

does take place, whereas the reaction 

(8.1.13) 
+ 

+ (Z,A) --÷ (Z-I,A) + ~ (?) 

does not appear to take place. Muon neutrinos are also, presumably, produced in 

muon B--decay: 

_ - + 

(8.1.14) ~ > ~ e-v , ~ ~ ~ e+~ 
e ~ e 

Unfortlmately there is no direct evidence that the two neutrinos emitted in muon 

decay are specifically of the v and ~ sort; this is pure hypothesis. If, how- 
e 

ever, there is not in any sense a separately conserved muonic quantum number, it is 

difficult to imagine why the reaction ~- ----+ e-y is never observed. 

It is commonly assumed that all four neutrino states are massless. This 

means that free neutrino states ought to be describable in terms of positive fre- 

quency solutions to the Weyl neutrino equation. The electron neutrino and the muon 

neutrino are both in negative helicity states, and thus are represented by positive 

frequency solutions of the ZRM equation V A'A' 9A = 0; while the electron anti- 

neutrino and the muon antineutrino are both in positive helicity states, and thus 

'A 
are represented by positive frequency solutions of the equation ~ ~A' = 0 . It 

should be noted that while experimental evidence shows that neutrino and anti- 

neutrino masses must be low, nevertheless there is comparatively little evidence 

whatsoever that the neutrino and antineutrino masses are actually zero. The best 

current upper bound on the muon neutrino mass, for example, is given according to 

o 
the analysis of Clark et al (1974); they conclude that the ~ mass is 0.65 MeV, or 

less. Not a very stringent bound, considering that the mass of the electron is 

0.5110034 ± .0000014 MeV.! Indeed, it would be edifying to have better experimen- 

tal information on the muon neutrino mass. The same authors conclude that the 

o -o 
- D mass difference is .45 MeV or less. (It is quite important to have an in- 

-o 
dependent determination of the ~ mass, since there is certainly no a priori argu- 
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o -o 
ment that ensures the D - ~ mass difference will vanish') The case for the 

electron antineutrino is a bit better: the upper bound on its mass, as determined 

by Bergkvis (1972) in his observations of tritium decay, and supported by a number 

of other experiments, is 0.00006 MeV. The experimental bound on the electron 

neutrino mass, as determined by Beck and Daniel (1968) analyzing Na 22 decay, is 

0.0041 MeV; again not so good, considering the upper bound of approximately 10 -21 

MeV currently available for the photon mass by a variety of experiments. In sum- 

mary: to say that the photon has zero rest mass is one thing, to suggest that the 

neutrinos all have zero rest mass is another' 

The tau particle was first observed by Perl et al (1975, 1976) in the debris of 

electron-positron annihilation. Reactions of the form 

+- !¥ 
(8.1.15) e e --÷ ~ e + (neutrals) 

were observed, and, after various alternatives had been systematically ruled out, 

it was deduced that the reactions took place via the following mechanisms: 

+ - + - 
(8.1.16) e e ----+ T T 

~ 
e-~eV T cr ~ ~T 

+5 - ~  ~ or e+~ 
~T-- eT 

It is simply by hypothesis that the neutrinos emitted in these reactions are speci- 

fically of the type mentioned above--in particular, the evidence for a distinct 

tau-neutrino ~T is quite indirect. It does seem reasonable, however, that T has 

its own conserved quantum number--otherwise, one of the decays T- -----+ N-~ and 

T- . > e-y would certainly have been observed: but neither of these decays appears 

to occur. The T-particle has mass 1807(20) MeV, and spin 1/2. 

If we assume that the T-particle is a "sequential!' lepton--that is to say, it 

has its own conserved quantum number and an associated neutrino (which may or may 

not be massless)--then it is consistent with all the known data on leptonic and 

semileptonic processes to assign each lepton a set of five quantum numbers, as 

shown in Table 8.I: 
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electric charge 

electron number 

muon number 

tau number 

lepton number 

particles antiparticles 

- _ + + + 

e ~ ~ V T- V e 5 ~ ~ T 5 
e ~ T e 

-i 0 -i 0 -i 0 

i i 0 0 0 0 

0 0 i i 0 0 

0 0 0 0 i i 

i i i i i 1 

Table 8.I 

i 0 i 0 i 

-i -i 0 0 0 

0 0 -i -i 0 

0 0 0 0 -i -] 

-1 -i -1 -1 -1 -Ii 

Lepton 0uantum Numbers 

The fifth of these numbers--namely, lepton number--is redundant, and is given by 

the sum of the electron number, the muon number, and the tau number. There is 

nothing particularly sacred about the assignment of quantum numbers given in 

Table 8.I, and one might fruitfully envisage the possibility of alternative schemes. 

8.2 Space Reflection Symmetry Violation. 

The violation of space reflection symmetry, or "parity symmetry", as it is 

sometimes called, is one of the characteristic features of weak processes involving 

leptons and, in fact, weak processes in general. Just what is this feature, and 

how does it manifest itself in weak interactions? The most glaring example of 

parity violation occurs in connection with the neutrinos. As we have said, the 

neutrinos ~ and ~ are always observed to be in eigenstates of negative helicity, 
e 

and on the other hand the antineutrinos ~ and ~ are always observed to be in 
e 

eigenstates of positive helicity. Parity transformations, as we shall see ex- 

plicitly, carry positive helicity fields into negative helicity fields, and vice- 

versa. And thus the parity transformation operation is not a valid symmetry opera- 

tion, at least as far as neutrino states are concerned. 
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A space-reflection is a transformation x a --÷ x~ with x~AA' = tB'tBA A'xBB' , 

where t a is an arbitrary timelike vector (orthogonal to the family of three- 

spaces where the reflections are made) normalized tat = 2. If @A ~ is a positive a 

helicity solution of the Z~M equation V AA' 

formation on ~A' is given by (1) 

~A' = 0 , then a space-reflection trans- 

~ Bw 

(8.2.1) @A,(X) --÷ @A(X) ; ~A(X) = t A @B,(X) 

with x given as above. It is a straightforward matter to verify that HA(X) defines 

a solution of the negative helicity ZRM equation. Thus, space-reflection trans- 

formations carry positive helicity fields into negative helicity fields. A more 

general and, in certain respects, more subtle manifestation of parity violation in 

weak processes is in the nature of the coupling which is responsible phenomenologi- 

cally for the weak interactions. [This is the so-called universal Fermi coupling(2).] 

The essential point here is that while the massive free-particle Dirac equation is, 

in a certain sense to be described, invariant under space-reflection transforma- 

tions, when those couplings are included which are responsible for weak interactions 

the resulting system is not invariant. When the couplings are to neutrinos it is, 

from what was said earlier, a foregone conclusion that invariance will be lacking, 

but the point here is that even when neutrinos are not involved (e.g., in hyperon 

decays, such as A ° ~÷ P~-) the invariance is lacking. Putting it briefly, this 

comes about as follows. 

of a pair of spinors ~A 

(8.2.2) 

where < = m/~2. The parity transformation 

(8.2.3) ~A --÷ ~A ' nA,---+~, ' 

is given according to the prescription 

A' A (~) 
(8.2.4) ~A(X) = t A ~A,(X) , ~A,(X) = tA,~ A 

The Dirac equation, in two-component spinor form, consists 

and ~A' which satisfy 

A A' 
VA'~A = <~A' , VA HA' = <~A ' 
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and it is not difficult to verify that the new pair CA , ~A' satisfies the Dirac 

equation, like the old. Thus, for the Dirac equation, a parity transformation 

carries us from solution to solution, and is a valid symmetry operation. When 

electromagnetic interactions are incorporated by putting VAA , ----+ DAA , above with 

DBB , = VBB , - i£ABB , , the resulting system is likewise invariant, providing the 

vector potential ABB , is chosen to transform in the obviously appropriate fashion. 

One aspect of the Dirac equation which must be appreciated, as was stressed 

by Feynman and Gell-Mann (1958), is that it is entirely satisfactory to base the 

description on a single spinor field ~A satisfying the massive wave equation 

( [] + m2)~A = 0. The secondary field HA , is recoverable as a gradient, using the 

first "half" of the Dirac equation as given above as a definition (the second "half" 

following from the wave equation). Similarly, with electromagnetic interaction in- 

cluded, we have the wave equation 

(8.2.5) (DbDb + m2)~A = i~AB~B , 

where ~AB is the electromagnetic field spinor (i.e., Fab = ~ABSA,B, + SA,B,~AB). 

In each of these cases the parity symmetry is of course still valid, since nothing 

essential has changed, but the statement of the transformations is somewhat more 

~ -i A'~B 
intricate since a gradient is involved, i.e., ~A ~ ~A with ~A(X) = ~ t A VA,~B(X ) 

~B ~B 
[substituting ?A' with DA, in the electromagnetic case.] The important fact about 

weak interaction coupling is that only the left-handed part (i.e., the ~A part) of 

the field figures into the field couplings for particles, and the right-handed 

(i.e., the ~A' part) for antiparticles. That is to say, as it is often put, there 

are no gradient couplings among the fields for weak interactions. Since the parity 

transformations bring in field gradients in a vital way, as indicated above, it 

follows that the weak interaction field equations are not invariant under parity 

transformations. I have purposefully avoided actually writing down these field 

equations explicitly because they tend to vary, in detail, from version to version 

of the theory (e.g., with respect to exactly which particle states are being in- 

cluded). But the state of affairs described above has been a central feature in 
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all modern studies of the weak interaction phenomenon. Certain interaction effects 

are predominantly parity symmetric. This is certainly the case, e.g., with electro- 

magnetism. In that case both parts of the massive field are treated on equal 

footing, and historically this partially accounts for the present wide-spread 

usage of the Dirac "four-component spinor algebra", which is so effective because 

it allows such a symmetry to be systematically incorporated into the formalism. 

With weak interactions, as we have seen, the circumstances are quite different-- 

there is absolutely no reason, in connection with weak interactions, for not 

adopting the two-component spinor formalism from the very outset. If the two- 

component formalism is not employed, the result is simply and utterly grotesque! 

8.3 Leptons as Two-Twistor Systems. 

Inasmuch as the electron neutrino is always in a left-handed helicity eigen- 

state, and inasmuch as the left-hand part of the electron wave function plays the 

"dominant" role in weak interactions, it is convenient to regard these two fields 

as comprising a left-handed doublet--with this doublet transforming under the action 

of SU(2). The SU(2) which arises in this connection is somewhat confusingly but 

not inappropriately called "leptonic isospin", and the {Ve ' e-} system forms an 

I = 1/2 multiplet, where I denotes the total leptonic isospin quantum number. This 

approach to classifying leptons does indeed seem to make a great deal of sense, 

and it forms, for example, the basis of the Weinberg-Salam model, which, on the 

whole, has been reasonably successful as a lepton model (certainly, the best of 

all proposals thus far put forward as such) and, in any case, very stimulating as 

a kind of launching pad for the preparation of more ambitious theories (3) . Inasmuch 

as the natural internal symmetry group for two-twistor systems contains, as its 

unitary part, the group U(2), and, seeing how hadrons seem to be describable most 

naturally as three (or possibly six) twistor systems, and leptons really ought, at 

least in some sense, to be more elementary than hadrons--although one might argue 

this point in the case of the T-particle--it follows that the most logical choice 

for the representation of leptons, at the outset, is in terms of a pair of twis- 

(4) 
tots This view, as we shall see, is deficient in at least certain respects. 
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i 
We wish to describe the {~e , e-} system as a doublet of fields @A " 

can be a c h i e v e d  i f  we i n t r o d u c e  a p a i r  o f  t w i s t o r s  Z~ ( i  = 1 ,  2) a n d  w r i t e  
1 

i /p ~i 
(8.3.1) ~A = x~A f(Z)A~ 

This 

for the contour integral formula relating the twistor function f(Z) to the fields 

i 
@A " In order for f(Z) to give rise in a unique way to one of the two fields 

1 2 
~A ' ZA ' we require it to be in an eigenstate of an appropriate set of holomor- 

phic differential operators corresponding to leptonic observables. 

Let us denote our pair of twistors Z~ by 
l 

(8.3.2) Z. ~ = (U ~ , D ~) , 
1 

in parallel with the hadronic case. The three generators of leptonic isospin are 

1 
~i = - ~ (u~D~ + D~u~ ) 

(8.3.3) 

these formulae being identical, in fact, with equations (6.3.8). The total lep- 

tonic isospin operator is 

(8.3.4) ~2 = (~i)2 + (~2)2 + (f3)2 

which, when acting on mass eigenstates, is identical (according to Proposition 

5.5.9) with the total spin operator. Thus, within a two-twistor framework a 

leptonic isodoublet must have spin 1/2. The two twistor mass operator is given by 

= I~U~DSI Y~ (8.3.5) 2 2 2 ~¥~ 

where here, as in (8.3.3), we have written 

Observe that for an electron we must have 
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(8.3.7) 

In addition, we require that f(U,D) be homogeneous of the appropriate degree in 

2 
U ~ and D ~ so that only ~A will be non-vanishing in (8.3.1). This is achieved if 

(8.9.8) 

= D~D - 2 

for the operators of lepton number, and electric charge, respectively. Note, in- 

cidentally, that we have the formula 

18.3.9) e ~ ~3 - 6/2 , 

which is the leptonic analogue of the Gellmann-Nishijima relation. 

The assignments for L and Q given in equations (8.3.8) are compatible with the 

contour integral formula 

(8.3.10) ~i' /p A' 
i = x~i f(Z)A~ 

for the {~ , e +} antiparticle doublet. Note that it is consistent with our ob- 
e 

servations in Section 8.2 that the particle states described in formula (8.3.1) are 

left-handed, whereas the antiparticle states described in formula (8.3.10) are 

automatically right-handed. 

A worrying feature of the scheme as it stands is the absence of the muonic 

leptons. Indeed, within a two-twistor framework there are only two linearly con- 

served quantum numbers that can be incorporated naturally into the picture. A 

further drawback arises in connection with the question of the "weak bosons". On 

account of the leptonie relation ~2 ~2 = we would expect--within a two-twistor 

framework--a leptonic isotriplet of spin 1 states. However, from phenomenological 

considerations it would be more consistent to have four states of spin 1 at our 

disposal, corresponding to the photon, and the three hypothetical weak intermediate 

M2f(U,D) = me2 f(U,D) , 

3 
{2f(U,D) = ~ f(U,D) 

we put 
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+ Z o bosons W , W-, and . This difficulty is of the same origin as the w-~ problem 

described in Section 6.7. One way of resolving the difficulty is to introduce more 

twistors into the model, an approach which does not seem unreasonable since it al- 

lows as well for the additional degrees of freedom needed in order to account for 

muon nu~er and tau number. 

8.4 Models for Sequential Leptons. 

Several suggestions have been put forward within the context of twistor theory 

for lepton models~ of a more complete character. 

One very intriguing approach, which will not be discussed here in any detail, 

is due to G.A.J. Sparling (5) . He has noted that for massive particles the eigen- 

value S(S+I) of the spin-squared operator -S sa/m2 is invariant under the trans- a 

formation S --÷ -S-I. Therefore he proposes the existence of a new observable 

which can have two distinct possible eigenvalues for a given value of the spin- 

squared S(S+I). By exploiting this extra degree of freedom within a twistor context 

(although no explicit twistorial form for the hypothetical operator S has yet 

emerged) it is possible to build up a lepton model which in at least certain respects 

seems quite natural. The model predicts heavy leptons, but the resulting spectrum 

of states differs significantly from the sequential pattern illustrated in Table 8.I. 

This may turn out to be a desirable feature in the model. But then again, it may 

not. 

Now we turn to the possibilities for building up multiplets of sequential lep- 

tons, using a description based on holomorphic functions of several twistors (6). 

Let us assume that all the basic leptons come in leptonic isospin doublets, 

such as the {v e , e-} doublet. Such a doublet can, as we have seen, be represented 

by a wave function of the form ~i , with i = i, 2. Now suppose that we have n such 

doublets. The first three of these doublets are evidently given by 

{ P  e , e - }  , { V  , N - }  , {V  T , T - }  , (8.4.1) 

but one could very well imagine that, at suitably high energies, others could be 

produced. Let us label these doublets ~Aip , with p = i, 2, ...n. The wave func- 
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tion ~ip transforms under the action of U(2)xU(n) in a natural way, and describes 

a multiplet of sequential leptons. 

To describe this set-up in twistor terms we introduce a multiplet of 2n 

"sequential twistors", labeled as follows: 

(8.4.2) Z~ (i = i, 2 ; p = i, 2 .... n) . 
ip 

Using the notation 

(8.4.3) Z ~ = (~ ZA,ip) • i r zp p 

(8.4.4) %~P = -~/~p , 

the multiplet ~Aip can be produced by the following contour integral formula: 

• ~ ^Aip 
(8.4.5) @AlP(x) : QX ~ f(Zip)h% , 

and the corresponding antiparticle multiplet is produced in accordance with the 

formula 

A' ~ A' 
(8.4.6) ~ip(X) =~Px~ipf(Zip)AT . 

It is not difficult to construct appropriate twistor operator expressions for the 

observables electric charge, mass, spin, leptonic isospin, and the n sequential 

lepton numbers (i.e., electron number, muon number, tau number, etc.), and the de- 

tails of this task can be left to the reader. 

As for intermediate vector bosons, it follows on account of the identity 

^ ' ^Aip A' (8.4.7) pAA = ~ 7 
±p 

that there is a single neutral "universally coupled" [i.e., invariant under the 

action of sequential SU(n)] boson state; and an additional set of 2n-2 "non- 

universal" neutral bosons, half of which are invariant under leptonic isospin 

transformations. It is reasonable to suppose that, in the absence of various pos- 

sible symmetry breaking effects, the single neutral universal boson corresponds to 

the photon. In the case n=2, there is but a single neutral state invariant under 
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leptonic isospin, and which therefore may couple in an identical fashion to both 

charged leptons and their neutrino counterparts. This state can be tentatively 

identified with the Z°-boson responsible for observed neutral current effects. The 

role of the remaining neutral bosons (both at the n=2 level, and at higher levels) 

is not so obvious, nor is it immediately evident what sort of mixing effects in- 

volving these states might be expected. In any case, it is worth noting that even 

if interactions are introduced following the standard patterns of renormalizable 

field theories (with the vector bosons treated as Yang-Mills fields, and with mass 

introduced via the Higgs mechanism) the couplings in the resulting model would 

necessarily differ in certain significant ways from the Weinberg-Salam model, es- 

pecially insofar as neutral currents are concerned. 

Chapter 8, Notes 

i. For a very interesting analysis of the discrete symmetries associated with 

the Poincar~ group, see Penrose, 1967, section VII. The corresponding twistor 

formulae are given there also. The reader should note carefully that the notational 

conventions vis-a-vis primed and unprimed spinor indices used in Penrose (1967) 

are opposite to those adopted here. 

2. Basic references on the universal Fermi coupling include Feynman and Gell-Mann 

(1958), and Marshak and Sudarshan (1958). 

3. See Weinberg (1967) and (1971). 

4. The two-twistor model described here was formulated in collaboration with R. 

Penrose and G.A.J. Sparling in 1975. 

5. See Sparling (1976). The S ----+ -S-1 idea has been pursued further by 

Penrose, Sparling, and Tsou (1978) in connection with properties of hadrons and 

Regge trajectories. 

6. Discussions with A. Popovich have been very useful in connection with the 

material of Section 8.4. Cf. Popovich (1978). 



CHAPTER 9 

SHEAVES AND COHOMOLOGY 

9.1 Cochains, ' C ocycles, and Coboundaries. 

The attitude that we have maintained thus far is to regard particle states as 

functions of one or more twistors, analytic over suitable domains. Since much of 

the analysis has proceeded more or less at the level of group theory, it has not 

been necessary to be too specific about the precise nature of these domains--nor 

has it been necessary to specify the exact nature of the contours involved in the 

description of n-twistor states. It should be clear, however, that a better under- 

standing of these matters would be quite desirable. Sheaf theory is the key that 

is required toward this end. 

Although it takes some time and practice to get used to the ideas and language 

of sheaf theory, physicists who are not already acquainted with the subject will 

certainly find the effort worthwhile. Our approach here will be rather informal. 

A sheaf over a space M, very crudely speaking, carries the information of the set 

of all the functions of a particular "type" defined over all the various open sets 

of M. By a section of a sheaf S over an open state U in M we mean a function (of 

the "type" with which S is associated) defined on the domain U. The types of func- 

tions in which one might be interested are, for example, continuous functions, dif- 

ferentiable functions, holomorphic functions, ete. These might be simply scalar 

functions--or they might be cross sections of various bundles: e.g., tensor fields. 

In each case, of course, it is required that M have the structure appropriate for 

the existence of functions of the relevant "type"--i.e., for holomorphic functions 

M should be a complex manifold. We refer to S as the "sheaf of germs of functions 

of type such-and-such". By 0 we denote, for example, the sheaf of germs of holomor- 

phic functions. The set of all sections of a sheaf S over an open set U forms an 

abelian group (under addition, in the case of holomorphic functions) and this group 

is denoted with the following symbol: 

(9.1.1) F (U,S) 
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Now suppose we have a collection of open sets U. which forms a covering for the 
1 

space M. If we take a section of S over each of the open sets U. , then the re- 
1 

sulting collection of functions is called a 0-cochain over M, subordinate to the 

covering U. . Thus a 0-cochain is an element of the group 
1 

(9.1.2) C°(Mu.,S) := r(ui,s) 
1 

In what immediately follows we shall delete the subscript U. from M, and it will be 
1 

understood that we are working subordinate to a particular covering. An element of 

C°(M,S) can be denoted fi , where for each value of i , the function fi is defined 

on the set U. . 
l 

Now let us write: 

(9.1.3) 

U.. = U.~U. 
13 i 3 

Uij k = Ui(~UjNU k 

Uijk~ = uin Uj~UknU £ etc. , 

for the various multiple intersection regions of the sets U. The higher cochain 

groups are then defined as follows: 

(9.1.4) 

CI(M,S) = r(u.. ,S) 
13 

C 2(M,s) = F(Uij k ,S) 

C 3(M,S) = F(Uijk£ ,S) , etc. 

Thus, an element of CI(M,S) is a collection of functions f defined over the 
13 

various double intersection regions U.. . By convention, we always take f.. to be 
I] 13 

skew-symmetric in its "cohomology indices"; that is to say, we put f.. = -f.. . 
±J J± 

Similarly, an element of Cq(M,S) is given by a collection of functions fij...k 

(with q+l indices) satisfying 

(9.1.5) f.. = f 
13. • .k [ij...k] 
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Let us denote by Qi the operator which restricts the domain of whatever it acts on 

to the intersection of that domain with the set U i . Thus if f2 is a function 

defined on U 2 then Plf2 is the function defined on UI2 obtained simply by restric- 

ting f2 down to the subset UI2 . Now let us consider the map @ defined by 

Cq(M,S) ~q÷ cq+I(M ,S) , 

(9.1.6) 
@q 

fj...k --+ P[ifj...k] 

The kernel of 6 q is a subgroup of Cq(M,S) consisting of elements f j...k satisfying 

(9.1.7) p[ifj...k] = 0 

This relation is known as the cocycle condition and q-cochains satisfying (9.1.7) 

are called q-cocycles. And thus we define 

(9.1.8) Zq(M,S) = {f. ~ Cq(M,S) I : 0} 3--.k Q [ifj...k] 

to be the group of q-cocycles over M (subordinate to the covering U i) with co- 

efficients in the sheaf S. 

The image of @q is a subgroup of cq+I(M,S) consisting of all elements gij...k 

which happen to be of the special form: 

(9.1.9) gij...k = P[ifj...k] ' 

for some f in Cq(M,S). Elements of this form are called (q+l)-coboundaries. 
j...k 

Thus (dropping one notch in q) we define 

(9.1.10) Bq(M'S) = {fj...k S Cq(M,S)Ifj...k = P[jg...k] ' 

with g 
..°k 

S cq-I(M,S)} 

to be the group of q-coboundaries over M. 

Now it should be evident that Bq(M,S) is a subgroup of Zq(M,S). This is be- 

cause any fj...k of the form Q[jg...k] automatically satisfies the cocycle condition 

(9.1.7). Therefore, we can construct the quotient group 
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(9.i.il) Hq(M,S) = Zq(M,S)/Bq(M,S) , (q > 0) 

where two distinct elements of Zq(M,S) are regarded as equivalent in Hq(M,S) if 

they differ by a coboundary: that is to say, a pair of cocycles f. and gj 
j...k ...k 

are "representatives" for the same element of Hq(M,S) if and only if there exists 

of Bq(M,S) such that an element p[jh...k ] 

(9.1.12) f. = gj. + 
3...k ..k p[jh...k] 

We call Hq(M,S) the qth cohomology group over M (subordinate to the covering U.) 
1 

with coefficients in the sheaf S. 

The method just outlined gives one of the several available techniques for 

describing the cohomology groups of a topological space M with coefficients in a 

sheaf S. The result depends to some extent on the choice of covering U i , but by 

(i) 
resorting to a limiting proceaure to finer and finer coverings (or, under more 

auspicious circumstances , simply by choosing U i sufficiently general) this dependence 

can be rendered irrelevant. 

1 
9.2 Liouville's Theorem, the Laurent Expansion, and the Cohomology of P 

The group H0(M,S) is defined to consist of 0-cochains f. satisfying the co- 
3 

cycle condition Q[ifj] = 0 . This means that whenever two open sets overlap on M 

the f's defined on these open sets agree with each other on the overlap region. 

This must hold over the whole space, and so it follows that f. must be the restric- 
3 

tion pjf of global function f to the various open sets U. Consequently we have 
] 

the isomorphism 

(9.2.1) H0(M,S) = F(M,S) , 

asserting that H°(M,S) consists precisely of global sections of the sheaf S over 

the space M. 

Now let us consider the case M = pl , choosing S = O , the sheaf of germs of 

holomorphic functions. Liouville's theorem in complex analysis states that the only 

analytic functions defined over the entire complex plane, and bounded at infinity, 
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are constants. The condition of boundedness at infinity is equivalent to regularity 

over the entirety of pl (where pl is obtained by compactifying the complex plane by 

adding a point at infinity). Thus Liouville's theorem amounts to the isomorphism 

(9.2.2) H0(pI,o) = C , 

where C denotes, as usual, the complex numbers. 

What about HI(pI,o)? Recall that for any analytic function defined in an 

annular region (i.e., a region excluding, say, the points corresponding to zero and 

infinity) there exists a Laurent expansion 

1 (~ anZn ~ b Z -n) (9.2.3) f(Z) = ~ - n ' 
o 1 

splitting f(Z) into an ascending power series and a descending power series. We 

can think of the annular region as the intersection of two open sets--one including 

infinity, and the other including zero. Thus using the Laurent expansion any func- 

tion f12 can be split in the form f12 = 0[if2] , where fl is analytic throughout 

the region containing infinity, and f2 is analytic throughout the region containing 

(2) 
zero. Consequently we have 

(9.2.4) HI(pI,o) = 0 , 

since any cocycle can be expressed as a coboundary, relative to the choice of 

covering we have made. 

More generally one can consider the cohomology on pl with coefficients in the 

sheaf O(n). This sheaf is defined as the sheaf of germs of holomorphic functions 

f(~A, ) , homogeneous of degree n in ~A' , where HA, represents the "homogeneous 

pl 
coordinates" on (i.e., we have Z = ~0,/~i, in equation 9.2.3 above). Note 

pl 
that f(~A,) is not actually a function on (except in the case n = 0) but is 

rather a function (3) on the space C2-{0} , from which pl can be obtained by projec- 

tion. We can regard O(n) as the sheaf of germs of holomorphic cross-sections of 

pl 
certain bundles (labeled by n) defined over . 

There exists a rather curious connection between the cohomology of pl with 

coefficients in O(n) and spinors. This relationship is very basic, and lies at the 
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n | ..S ! 
heart of both relativity and quantum mechanics. Let us denote by S " the 

of symmetric spinors of valence [Z] , and similarly let us write space SA,...B, 

for the dual space. Then it turns out that we have the following isomorphisms: 

HO (pl,o (n)) A' .B' (9.2.5) = S "" (n > 0) 

(9.2.6) H°(pl,o(n)) = 0 (n < 0) 

(9.2.7) HI(pI,0(-n-2)) = 0 (n < 0) 

(9.2.8) HI(pI'o(-n-2)) = SA'...B' (n > 0) 

Equation (9.2.5) asserts, for example, that the only global sections of 0(n) over 

pl are homogeneous polynomials in ~A' of degree n; thus a typical representative for 

.B ! ! 
an element of H°(pl,o(n)) would be given by fA'.. ~A,...~B, , where fA'...B 

is a constant spinor, with n indices and completely symmetric. 

The isomorphism, as dual vector spaces, between H°(pl,o(n)) and the group 

Hl(pl,o(-n-2)) is a special case of a more general result of this nature known as 

Serre duality (Serre, 1955). Let us consider, for example, the case n = 1. We 

want to see how an element of HI(pI,o(-3)) corresponds to a constant spinor gA' 

of valence [~].- Now a representative cocycle for an element of HI(pI,o(-3)) will 

be a collection of functions fij homogeneous of degree -3 in ~A' " If one multi- 

plies fij by ~A,~B, then the result is homogeneous of degree -i and, according to 

(9.2.7) is cohomologically trivial: this means that ~ ,~ ,f.. is a coboundary, and 
' A B 13 

one can write 

-3 -i 
(9.2.9) ~A'~B'fij = Q[i gj]A'B' 

for some 0-cochain giA'B' homogeneous of degree -1. 

B' 
(9.2.9) with ~ one obtains the cocycle condition 

Now contracting each side of 

0 

(9.2.10) p[igj]A, = 0 , 

0 
where we have defined gjA , by the formula 
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(9.2.11) 

0 -1 
B' 

gjA' : gjA'B 'Z 

Since gjA' satisfies the eocycle condition it must be the restriction QjgA' of a 

global function gA' , and since gA' is homogeneous of degree zero, it must be 

constant. And thus we see that we do indeed have an isomorphism as indicated in 

equation (9.2.8). 

9.3 The Cohomology of pn. 

On pn the set-up is very similar. Let us write Za' (a' = 0, ... n) for the 

homogeneous coordinates on pn , and write O(m) for the sheaf of germs of holomorphic 

functions "twisted by m" (i.e.,--homogeneous of degree m on cn+l-{0}). The only 

non-vanishing cohomology groups are as follows: 

(9.3.1) H°(pn,o(r)) = space of polynomials in a' homogeneous of degree r 

(9.3.2) Hn(pn,o(-n-l-r)) = dual to H°(pn,o(r)) 

A polynomial homogeneous of degree r will be of the form fa'...b' ~a,...~b, , where 

..b ! 
fa'. is a symmetric tensor of valence [~] ; and thus H°(pn,o(r)) is the space 

..b I 
S a'" of such tensors. Similarly, Hn(pn,o(-n-l-r)) is the dual space S ...b' a' 

Let us consider, as an example, the group H2(p2,o(-3)). According to our 

general formulae above we should have an isomorphism H2(p2,O(-3)) = C. Consequently 

we should be able to extract the information of a complex number from a representa- 

2 
tive 2-cocycle fijk ' homogeneous of degree -3. Now since H vanishes for twist > 

-3 , we must have 

(9.3.3) 
-3 -2 

~a,fijk = P[ifjk]a , 

-2 
for some l-cochain fjka' " 

(9.3.4) 

-i 
where fjka'b' 

(9.3.5) 

Skewing each side of (9.3.3) with ~b' 

-i 

[i f = 0 , P jk]a'b' 

is defined by 

-i 

fjka'b' 

-2 

= fjk[a,~b,] 

we have 
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Since fjka'b' has twist ~i and satisfies the cocycle condition, it must be co- 

homologically trivial: 

(9.3.6) 
-i -i 

fjka'b' -- P[jfk]a'b' 

Skewing each side with ~a' and using (9.3.5) we then have 

0 

(9.3.7) O[jfk]a,b,c, = 0 , 

0 
with fka'b'c' 

(9.3.8) 

0 

defined by 

0 -i 

fka'b'c' = fk[a'b'~c '] 

Since fka'b'c' is global and homogeneous of degree 0 it must be constant. Moreover, 

since it is skew-symmetric (and a' = 0, l, 2), it is equivalent to a single complex 

number f given by the formula f 'b'c' = f£a'b'c a 
It should be evident how this 

analysis extends to the remaining isomorphisms given in equation (9.3.2). For 

further discussion see, for example Griffiths and Adams, 1974, pp. 45-55; a proof 

of the isemorphisms (9.3.1) and (9.3.2) can be found there. These results, estab- 

lished from a somewhat more general point of view, can also be found in Hartshorne, 

1977, pp. 225-230. 

9.4 The Long Exact Cohomology Sequence. 

A sequence of groups and group homomorphisms 

(9.4.1) 
~n-i dn 

Gn_ 1 ----+ G n ~ Gn+ 1 ----+ ... 

is called exact at G if the image of dn-1 is precisely the kernel of ~ If a 
n D 

sequence is exact at each term of the sequence, then we have an exact sequence 

of groups. An exact sequence of the Special form 

(9.4.2) 0 --+ F ~ ~ G ~ H ; 0 

is called a short exact sequence. Exact sequences that are longer than short 

exact sequences are, for reasons which should not be entirely incomprehensible, 

called long exact sequences. It is not difficult to verify that in order for a 
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sequence (9.4.2) to be exact one must have: 

(9.4.3) 

(a) ~ is injective 

(b) Im(~) = Ker(~) 

(c) ~ is surjective 

It turns out that it is almost always illuminating to try to formulate problems in 

terms of the properties of appropriate exact sequences. This goes for physics 

problems as well as mathematics problems[ 

In an analogous way one can consider exact sequences of sheaves. A straight- 

forward and very powerful result is available interrelating the eohomology groups 

associated with a short exact sequence of sheaves: 

9.4.4 Proposition. If 0 ---+ R ~-~-÷ S ~ ~ T -----+ 0 is a short exact sequence 

of sheaves over a space M, then there exists a map 6 such that the sequence 

(9.4.5) ... ----+ Hn(M,R) ~-~-÷ Hn(M,S) -i÷ Hn(M,T) @-~_÷ Hn+I(M,R) _--_+ ... 

is exact. 

Proof. We shall simply show the existence of the map 6, and leave the rest of 

the proof to the reader. Now suppose fj...k is a representative cocycle for an 

element of Hn(M,T). Since the mapping S ~ T is surjective we can pull back each 

of Cn(M,S). The eocycle function in the collection f. to form an element gj 
3...k ...k 

condition on f. is not necessarily maintained in this procedure, and thus all we 
]...k 

is that it is an element of Cn(M,S). If we now consider can say of gj...k 

p[igj...k] it is interesting to observe that the action of ~ gives: 

(9.4.6) ~P[igj...k] Q[i ~gj...k] p[ifj...k] = 0 

Since p[igj...k] belongs to the kernel of ~ it can, on account of the condition 

Im~ = Ker~ , be pulled back to some eochain h.. in cn+I(M,R), satisfying 
l]...k 

~hij...k = p[igj...k] Applying p~ and skewing we get 

(9.4.7) ~p[~hij...k ] = p[zpigj...k] = 0 
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However, since d is injective it can only send zero to zero, and thus we must have 

(9.4.8) p[~hij...k ] = 0 , 

showing that hij...k is a cocycle. Thus, starting with a representative cocycle in 

Hn(M,T) we arrive at a representative cocycle in Hn+I(M,R). One can easily check 

that the coboundary freedom works out just right, and thus we have a mapping @ from 

Hn(M,T) to Hn+I(M,R). It is not difficult to verify that @ has properties suffi- 

cient to ensure that sequence (9.4.5) is indeed exact (4) . [] 

The long exact cohomology sequence is of considerable utility when it comes to 

specific computations, as we shall now proceed to illustrate with several examples. 

9.5 The Koszul Complex. 

On p1 let us denote by OA,(n) the sheaf of germs of spinor-valued holomorphic 

functions, twisted by n. Then we have the following result: 

9.5.1 Proposition. The sheaf sequence 

(9.5.2) 
A' 

A' 
0 ----+ 0(-2) ) 0 A, (-I) ----+ 0(0) ~ 0 

is exact. 

Proof. The map 0(-2) ~ OA,(-I) is injective since ~A' (homogeneous co- 

ordinates for pl) is non-vanishing. Exactness at 0 A,(-I) follows from the trivial 

A' 
spinor identity ~A,~ = 0 . To prove that OA,(-I ) > O(0) is surjective note 

that if f(~A,) is a holomorphic function homogeneous of degree zero defined on some 

small open set U then we can pick a point ~A' lying outside of U and write 

fA, (~A ,) = ~A,f/~B,~B' , which is non-singular throughout U and homogeneous of 

A' 
degree -i in ~A' ' and satisfies ~ fA' = f ' as required. [] 

This is a very elementary exact sequence--but nevertheless a sequence of great 

interest. In fact, when it is jazzed up just a bit it provides (as we shall see) a 

very direct route for establishing the connection between twistor cohomology and 

zero rest mass fields. A sequence of slightly greater generality is given by; 
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n+l 

A' 
~A,~B,...~C , 

(9.5.3) 0 ÷ O(-n-2) ) OA'B'...C' (-i) ÷ OB'...C' (0) > 0 

n+l n 

Now if we construct the associated long exact cohomology sequence, the result is 

(9.5.4) "'" --÷ HO(pI'OA'B'...C' (-i)) ----+ H°(pI,OB,...C, (0)) --÷ 

HI(pI, o(-n-2)) -----+ HI(pI,OA,B,...C,(-I)) > 0 . 

Thus, providing we know that H 1 and H 0 both vanish for O(-1), we obtain the isomor- 

phism (9.2.8) very directly. To see that H0(pI,o(-I)) vanishes, note that if f(zA,) 

A' 
were a global function of ZA' homogeneous of degree -i , then f~A,Z would be 

global and homogeneous of degree 0. Whence by Liouville's theorem f~A,Z A' = k, 

,A' 
where k is a constant. But then we would have f = k/~ A which blows up at 

~A' ~ ZA' ; thus we have a contradiction unless f simply vanishes. To see that 

HI(pI,o(-i)) vanishes, we proceed as follows~ Suppose f. is a representative co- 
z] 

cycle for an element of HI(pI,o(-I)). Multiplying by ZA' we get 

-i 0 
(9.5.5) ~A,fij = p[ifj]A , 

0 HI(pI,o(0) ) A' for some f. since we know is trivial. Transvecting with z we get 
]A, , 

A' A' 
p[ifj]A,~ = 0 , showing that fjA,~ is global~ 

A I A I 

(9.5.6) fjA 'Z = Qj~A 'Z ' (~A' constant) 

Equation (9.5.6) implies that fjA' must be of the form: 

-i 
(9.5.7) fjA' Pj~A' + fj~A' 

-i 
Substituting (9.5.7) in (9.5.5), we get the desired result, namely: ~A,fij = 

-i 
p[ifj]~A , , showing that fij is indeed cohomologically trivial. 
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A result quite analogous to Proposition 9.5.1 holds for pn . Let us denote 

pn 
homogeneous coordinates on , as before, by ~a' " And we shall write Oa,...b,(r) 

for the sheaf of germs of skew-symmetric tensor valued holomorphic functions, 

twisted by r. Then we have: 

9.5.8 Proposition. The sequence 

9.5.9) 0 > O(-r-l) > Oa,(-r) > Oa,b,(-r+l) > --- 

... --÷ Oa,b,...c,(0) --÷ 0 

is exact, where in each case the sheaf maps are given by multiplication by Za' and 

skew-symmetrizing in an appropriate fashion. 

The proof is quite analogous to that of Proposition 9.5.1. It is not difficult, 

also, to construct an analog of sequence (9.5.3). Then by applying the exact co- 

homology sequence one can obtain directly the isomorphisms (9.3.1) and (9.3.2). 

Sequence (9.5.9) is a special example of what is known as the Koszul complex. As 

will be discussed in Section 10.6, it plays a special role in the analysis of the 

cohomology of functions of several twistors. 

9.6 Line Bundles and Chern Classes. 

It is easy to see that the set of all nowhere-vanishing holomorphic functions on 

a region U forms a group under multiplication. The corresponding sheaf is denoted 

0". Since locally any nowhere-vanishing holomorphic function g can be expressed in 

the form exp(f) = g , where f is a holomorphic function, the following sequence is 

exact, where Z denotes the integers: 

(9.6.1) 0 > Z ~ O ----+ 0* --÷ 0 , 

Where the map Z --÷ O is simply multiplication by 2zi 

The cohomology sequence associated with (9.6.1) contains the segment: 

(9.6.2) -- -----+ HI(M,O) ÷ - - -  (M,O) -- ) H2(M,Z) -----+ --- H 1 

The group HI(M,O *) is called the group of holomorphic line bundles over M, and each 
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element of HI(M,O *) is called a line bundle. A line bundle is specified by giving 

a representative cocycle ~ij , which must satisfy the cocycle condition 

(9.6.3) Pijk~ij~jk~k i = 1 , 

where Pijk denotes restriction to the triple intersection region U ijk . Note that 

(9.6.3) is satisfied trivially if we put 

(9.6.4) ~ij = Pij~i/~j ' 

where ~i is a collection of nowhere-vanishing holomorphic functions defined over U i- 

Thus the coboundary freedom available in the specification of a line bundle is 

given by 

-i 
(9.6.5) ~ij ~ Pij~i~ij~j 

The element of H2(M,Z) to which a line-bundle ~ij is mapped in (9.6.2) is called the 

Chern class of the line bundle. From the exactness of (9.6.2) it should be evident 

that line bundles with vanishing Chern class are precisely those which can be ob- 

tained by "exponentiating" elements of HI(M,O); i.e., a line bundle ~ij has vanish- 

ing Chern class if and only if it can be expressed in the form 

(9.6.6) ~ij = exp(fij) ' 

with f.. satisfying the additive cocycle relation 
13 

(9.6.7) p[ifjk] = 0 . 

The notion of line bundle is a special case of the notion of a vector bundle (5) 

over a space M. A holomorphic vector bundle is defined to be an element of the 

HI(M,O~), where O~ is the sheaf of holomorphic non-singular matrix valued func- group 

An element of HI(M,O~) is specified by a collection [a tions. ijb of such functions 

over U.. satisfying 
13 

~a ~b ~c a 
(9.6.8) Pijk~i]b~jkc%kid = ~d (in Uij k) 
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9.7 Varieties, Syzygies, and Ideal Sheaves. 

A projective algebraic variety is defined to be the common zero set of a col- 

lection f of homogeneous polynomials in the homogeneous coordinates Z a of complex 
r 

projective n-space. If there is but a single homogeneous polynomial f, then the 

variety V defined by f = 0 is called a hypersurface of degree q , where q is the 

degree of the polynomial f. Hypersurfaces of degree q = i, 2, 3, 4, ... are 

called hyperplanes, quadrics, cubics, quartics, etc., respectively. 

As a simple example of an algebraic variety one can consider the embedding of 

pIxpI as a quadric hypersurface in p3. Suppose we write ~' (A' = I, 2; i = i, 2) l 

for the four homogeneous coordinates of p3 . Then the quadratic equation 

A ! B I .. 
(9.7.1) ~i ~'3 eA'B'~ 13 = 0 

has the solution 

A l A I 
( 9 . 7 . 2 )  z. = Z I .  

l 1 

A ! 
The variables ~ and I. (which are determined by 9.7.2 only up to scale) serve as 

1 

homogeneous coordinates for pIxpI . 

As a somewhat more complicated example, let us consider the embedding of pIxp2 

as an algebraic variety in p5 For homogeneous coordinates on p5 let us write 

~iA' (i = i, 2, 3; A' = I, 2). Then pIxp2 is given by the locus 

AIB l 

(9.7.3) ~iA'~B'63 = 0 , 

for which the solution is 

(9.7.4) ~iA' = ~A'li ' 

with ~A' and li acting as homogeneous coordinates for pl and p2 , respectively. 

should be noted that the three equations (9.7.3) are not completely independent, 

since we have the relations 

fij~kA,£ ijk = 0 , (9.7.5) 

It 
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which are satisfied automatically, where fij is defined by 

A'B' 
(9.7.6) fij = ~iA'~jB 'e 

Associated with any projective algebraic variety V is an ideal sheaf I V , de- 

fined to be the sheaf of germs of holomorphic functions which vanish on V. The 

ideal sheaf can be described by an exact sequence 

PV 
(9.7.7) 0 ----+ I v ----+ 0 ----+ 0 V ----+ 0 , 

where PV is the restriction map down to the variety, and O v is the sheaf of germs 

of holomorphic functions defined on the variety. In the case of plxpic p3 we ob- 

serve that, locally, any holomo~phic function which vanishes when restricted down 

from its domain in p3 to the intersection of that domain with the quadratic pIxpI 

A' B' ij A' A' 
must be of the form ~i ~j £ £A,B,f(~i ) , where f(~i ) is homogeneous of degree 

-2. Thus, in this case (9.7.7) can be written more explicitly in the form 

(9.7.8) 0 -----+ 0(-2) -----+ Op3 -----+ Oplxp I --+ 0 

In the case of pIx2c p5 the syzygy (9.7.5) plays a role, and the analog of sequence 

(9.7.8) is a long exact sequence. This is because any function on a region of p5 

plxp2 giJfij which vanishes when restricted down to must be of the form , with fij 

as defined in (9.7.6) and g 13 an arbitrary holomorphic function (twisted by -2). 

Therefore it follows that the sequence 

(9.7.9) O13(-2) ----+ 0 ----+Op5 ~ Oplxp2 

is exact. However, we can substitute 

. . . .  ijk A' 
(9.7.10) g z3 ~ g 13 + ~ ~A,k h (~) , 

where hA'(~) is an arbitrary function homogeneous of degree -3, and leave gl]f.. 
~3 

(6) 
invariant. Thus, on account of (9.7.5) we obtain a long exact sequence : 

(9.7.11) 0 --÷ oA'(-3) --÷ oiJ(-2) ----+ Op5 ----+ Oplxp 2 --÷ 0 
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Consequently, since the first three of the sheaves in (9.7.11) are defined on p5 • 

the cohomology of pIxp2 can be related to various cohomology groups defined on p5 

(using the long exact cohomology sequence). Of course in this case we can compute 

the cohomology of pIxp2 directly by other means; but for other varieties (which~ 

may not have the pleasure of being products of projective spaces) we can construct 

analogs of (9.7.11) and reduce the problem of computing the cohomology of V to an 

elementary problem in linear algebra. 

For example, suppose one is interested in the cohomology of a non-singular 

cubic surface A 8yZ~ZSZ Y = 0 in p3 . In this case the relevant exact sequence is 

(9.7.12) 0 . . . . .  ) Op3(n~3) ~ ÷ Op3(n) ---+ Ov(n) ~ 0 

where OV(n) is the sheaf of germs of holomorphic functions on the cubic surface, 

twisted by n, and the map ~ is multiplication by the function A ~ Z~Z~Z Y . Taking 

the cohomology of (9.7.12), a short calculation gives 

(9.7.13) H0(V,Ov(n)) = Coker(~*) , ~*:H0(p3,O(n)) --+ H0(p3,0(n-3)) , 

and 

(9.7.14) H2(V,Ov(n)) = Ker(~*) , ~*:H3(p3,O(n-3)) ~+ H3(p3,0(n)) 

After a little thought one will recognize (9.7.13) as the space of symmetric dual 

twistors P ~y~...e of valence n, modulo the space of symmetric valence n dual twis- 

tots of the special form A(d~yP~...6) , where P~...£ is of valence n-3. In (9.7.14) 

one finds the dual space to (9.7.13), this being the space of symmetric twistors 

p~y6...£ of valence n which are annihilated by A ~ : 

(9.7.15) P~SY6"''eA = ~y o . 

AS another example, let us consider the so-called "twisted cubic" curve in p3 . 

In this case it is most convenient to parameterize p3 by symmetric spinors of valence 

3. Thus, the four independent components of ~ABC act as homogeneous coordinates for 

p3 . The twisted cubic curve is defined to be the locus 
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c 
(9.7.16) ~ABC~E F = 0 

C 
Writing ~ABEF = ~ABC~EF it is straightforward to verify the property 

(9.7.17) ~ABEF = - ~EFAB 

Thinking of the symmetric index pairs AB and EF as index clumps, we see that ~ABEF 

is a skew-symmetric three-by-three matrix, and accordingly has three essential 

components. Thus (9.7.16) represents the intersection of three quadrics. This 

gives us the exact sequence 

O ABEF ~ABEF 
(9.7.18) p3 (n-2) • + Op3(n) ..... i OT(n ) , 

where OT(n) is the sheaf of germs of holomorphic functions on the twisted cubic, 

twisted by n. In order to continue (9.7.18) to form a long exact sequence, we need 

the elementary spinor identity 

(9.7.19) ~ABEF ~ABE = 0 

This gives us the sequence 

(9.7.20) 0 ----+ oA(n-3) ~--~-÷ oABEF(n-2) -----+ O(n) ~÷ OT(n) - ~ 0 , 

where the sheaf map ~ is specified by 

(9.7.21) O A ~ o(A~ B)EF - o(E~ F)AB 

in order to ensure that the image has the correct symmetries. Given the exact se~ 

quence (9.7.20), it will be left to the reader to work through the details of sorting 

out the associated long exact cohomology sequence t this being intricate but not dif- 

ficult. 

This concludes our brief introduction to sheaves and cohomology. All of the 

material mentioned here is useful in one way or another in connection with twistor 

theory, although not all that has been said will be used in the next chapter. For 

further material the reader is referred to Serre (1956), Gunning and Rossi (1965), 

Gunning (1966), Chern (1967), Morrow and Kodaira (1971), Godement (1973), 
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Shafarevich (1977), Hartshorne (1977), and numerous other references. It should be 

stressed that hhere are many intimate interconnections between quantum mechanics and 

the theory of algebraic varieties--it is reasonable to speculate, in fact, that all 

the discrete degrees of freedom that manifest themselves in quantum mechanics can be 

understood ultimately in terms of the cohomology of algebraic varieties. For the 

various continuous degrees of freedom that appear in quantum mechanics, however, it 

would appear that more general categories of complex manifolds (i.e., non-algebraic 

manifolds) must be investigated. 

Chapter 9, Notes 

i. For a description of the limiting procedure involved here see Gunning, 1966, 

p. 30.. Also, see pp. 44-47 in the same reference for a discussion of "Leray's 

theorem" which gives a set of conditions sufficient to ensure that a covering U. is 
1 

general enough to calculate the cohomology of a space M. 

2. Strictly speaking in order to establish this result we need to know that a 

covering of pl by two open sets suffices to compute its cohomology. 

3. Cross-sections of the sheaf O(n) are often referred to as "twisted functions"; 

and O(n) itself is called the ~'sheaf of germs of holomorphic functions, twisted by n". 

4. For further discussion of the long exact cohomology sequence, see, for example, 

Gunning, 1966, pp. 32-34. 

5. Holomorphie line bundles and holomorphic vector bundles--built over suitable 

regions of projective twistor space--can be used to describe self-dual solutions of 

Maxwell's equations and the Yang-Mills equations (without sources). See Ward 

(1977a and 1977b), Atiyah and Ward (1977), Hartshorne (1978), and Ward (1979) for 

various details of the procedure. Also see Burnett-Stuart (1978) and Moore (1978). 

6. Note that for sequence (9.7.8) we have an isomorphism between 0(-2) and I V . 

In the case of sequence (9.7.11) we have the following isomorphism: 

.. . A I 

I = O±3(-2)/Image[O (-3)] 
V 



CHAPTER i0 

APPLICATIONS OF COMPLEX MANIFOLD TECHNIQUES 

TO ELEMENTARY PARTICLE PHYSICS 

10.1 The Kerr Theorem. 

Standing before us we see two alternative pictures of reality. On the one 

hand there is spaoetime, and on the other there is twistor space. Einstein has 

taught us that gravitation is itself but an aspect of the structure of spaeetime. 

According to the view of twistor theory, gravitation is to be reinterpreted in terms 

of the complex analytic geometry of twistor space. Elementary particle states are 

to be interpreted similarly--in fact, according to Penrose we are to think ulti- 

mately of actually in some sense incorporating elementary particle states directly 

"into" the complex analytic structure of twistor space. 

At the moment only a few examples of this procedure are known in sufficiently 

explicit detail to make comment worthwhile~however, there is no reason to suppose 

that these techniques cannot be generalized to accontmodate a reasonable spectrum 

of particles, and to treat certain features of their interactions as well. 

At the mention of interactions what springs to mind immediately is the question 

of how the various non-linearities of field theory are to be realized in complex 

analytic terms. The Kerr theorem provides a striking illustration of the fact that 

certain non-linear partial differential equations arising in connection with 

properties of fields on Minkowski space can be reinterpreted in a very straight- 

forward way in terms of the complex analytic geometry of twistor space. The Kerr 

theorem has its origin in certain special classes of Maxwell's equations, called 

null electromagnetic fields. A null electromagnetic field is a solution of 

Maxwell's equations for which both of the invariants FabFab and *FabFab vanish. 

Equivalently, if the electromagnetic field spinor @A'B' is introduced according to 

the familiar scheme 

(i0.i.i) Fab = ~A,B,EAB + ~ABEA,B , , 

then Fab is null if and only if @A'B' is of the form 
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(10.i.2) @A'B' : @ZA'ZB ' ' 

for some choice of @ and ~A' " According to a remarkable theorem of Robinson (1959), 

if a spinor field ZA' satisfies the geodesic shearfree condition 

A' B' 
(10.1.3) Z Z VAA,ZB, = 0 , 

then there will always exist a choice of @ such that @A'B' , as defined in (10.i.2), 

AA' 
satisfies Maxwell's equations V ~A'B' = 0; and conversely, if a spinor field @A'B' 

satisfies Maxwell's equations and is of the form (10.1.2), then ZA' satisfies 

(10.1.3). Equation (10.1.3) asserts that ~A' is tangent to a family of geodesic 

shearfree null rays. According to the theorem of Kerr (1) , such geodesic shearfree 

congruences can be characterized in terms of complex analytic surfaces in p3. 

A complex analytic surface in p3 is defined by the vanishing of a holomorphic 

function f (Z ~) , homogeneous of some degree n. If f (Z ~) should happen to be a homo- 

geneous polynomial, then the surface f(Z ~) = 0 [which will henceforth be denoted 

S] is an algebraic surface; but more generally we simply have an analytic surface. 

Let us denote by X a complex projective line in p3 corresponding to a space- 

AA' 
time point x Now if Z ~ is an intersection point of X and S, then Z ~ must be of 

the form 

AA ! 
(10.1.4) Z ~ = (ix ZA' ' ~A ') ' 

and must satisfy 

AA I 
(10.1.5) f(ix ZA' ' ZA ') = 0 

If we vary the line X, then ZA' must be correspondingly adjusted if (10.1.5) is to 

remain satisfied. In this way we obtain a field of spinors ZA,(X), determined up to 

proportionality, satisfying 

AA w 
(10.1.6) f[ix ~A,(X) , ~A,(X)] = 0 

In general the field ~A,(X) will possess several distinct "branches", since it is 

possible for a given line X to intersect S in more than one place. 
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10.1.7 Theorem. If a spinor field ZA,(X) satisfies (10.i.6) for some 

holomorphic function f(Z~), then it satisfies equation (10.1.3). 

Proof. Since f(Z ~) is homogeneous of degree n we have 

(10.1.8) z c~ ~f ~Z ~ =  nf 

whence on the surface S we have 

(10.1.9) Z o~ ~f = 6o A 3f +17 ~----~f = ~-Y ~ A' ~A'  o . 

Then, restricting to the intersection of S with X, we obtain 

BB' ~f Df 
(i0.i.i0) ix ~B' ~B + ~B' ~'EB' 0 , 

which implies the existence of a scalar ~ such that 

BB ' 
(10.l.ll) ix 

~f ~f B' 

B' 

Storing this bit of information, let us return to equation (i0.1.6). Since 

AA' 
(10.1.6) must remain valid if we vary x , it follows that the derivative 

BB' 
(10.1.12) VAA,f[ix ~B,(X) , ~B,(X)] 

must vanish. With a straightforward application of the chain rule, the vanishing 

of (10.1.12) implies 

(10.1.13) i~A, ~f + (VAA,~B,) [ixBB' ~f + d~B'~f ] = 0 
~A ~B 

Transvecting (i0.i.13) with A' and using (i0.i.ii), the desired result (10.i.3) 

follows immediately°[] 

As an example of the Kerr theorem at work, let us consider again a cubic sur- 

face in p3 , given by the equation 

(10.1.14) A ~ Z~Z~Z Y = 0 

Now associated with A ~ is a solution ~A'B'C'(x) of the equation 



129 

(io.1.15) ~v(A'~ B'c'D') : 0 , 

where ~A'B'C' is defined by 

(10.1.16) PxA ~TZ~Z~Z Y ~A'B'C' 
: ZA,ZB,ZC, , 

! 

with px Z ~ = (ixAA ZA' , ZA,) , as usual. Thus, if we put 

AA' 
(10.1.17) Z ~ = [ix TA, (x) , ~A,(X)] 

in equation (10.1.14), then we obtain 

(i0.I. 18) ~A'B 
I c i 

ZA' (X)ZB' (X)%c' (x) = 0 

as the formula for our shearfree congruence. Equation (10.1.18) has three distinct 

solutions, for a general cubic surface, and these are given by 

(10.1.19) %A' ~ ~A' ' ZA' z ~A' ' %A' ~ YA' ' 

where ZA' ' ~A' , and YA' are the principal spinors of ~A'B'C' 

i w i 

(10.1.20) ~A'B'C' = ~(i ~B yC ) 

It is not difficult to verify that as a consequence of (10.1.15) all three of 

these principal spinors satisfy the geodesic shearfree condition, and thus define 

the three branches of the congruence of geodesic shearfree rays associated with 

the cubic surface (10.1.14). Incidentally, according to a classical result of pro- 

jective geometry due to Schl~fli, a cttbic surface in p3 has exactly 27 lines lying 

on it--in spacetime this result corresponds to the fact that a solution of (10.1.15) 

must possess exactly 27 zero-points (i.e., points where ~A'B'C' vanishes). A de~ 

tailed investigation of the geometry of this configuration would undoubtedly make 

for a highly amusing exercise (2) " 

10.2 Zero Rest Mass Fields as Elements of Sheaf Cohomology Groups. 

Now we come to the question of analyzing zero rest mass fields from the per~ 

spective of twistor sheaf cohomology. We are interested here in the cohomology 
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group HI(M,O(n)), where M is a region of p3 , and where O(n) is the sheaf of germs 

of holomorphic functions twisted by n. The sort of region M in which we are in- 

terested is one that is swept out by a set of projective lines in p3 corresponding 

to a set of points in complex Minkowski space. For positive frequency fields, for 

example, the region of complex Minkowski space of interest is CM + , and the cor- 

responding region in p3 is PT + . 

10.2.1 Proposition. Each element of Hl(M,O(n)) corresponds to a zero rest 

i 
mass field of helicity s = - ~n-i defined over the region of complex Minkowski 

space to which M is related. Distinct elements correspond to distinct zero rest 

mass fields. 

Proof. First let us consider the case s > 0, i.e., n < -2. In order to 

simplify the discussion we shall examine the case s = 1/2 explicitly, and the 

reader should have no difficulty in filling in the details required for higher 

helicities. 

Suppose that f.. is a representative coeycle for an element of HI(M,O(-3)). 
i] 

1 
If we restrict f.. down to the complex projective line P corresponding to a space- 

i 3 x 
AA' AA' 

time point x , then Oxfij can be regarded as a function of x and ZA' " For 

AA' a representative 1 fixed x then Pxfij is cocycle of HI(p ,0(-3)). Now we can 

apply the analysis of Section 9.2. If we multiply Pxfij by ZA,ZB, , the result 

must be cohomologically trivial, so we get 

-3 -i 

(10.2.2) ZA,ZB,Pxfij = p[igj]A,B, 

-i 
AA' 

for some 0-cochain giA'B' , which is a function of x and ZA' " 

A' 
(10.2.2) with Z we get (cf. equation 9.2.9): 

Transvecting 

(10.2.3) 

0 
where @jA' 

(10.2.4) 

is defined by 

0 

p[i@j]A , = 0 , 

0 -i B ' 

@jA' = gjA'B '~ 

0 
Since @jA' is global and homogeneous of degree zero in ~A' , it must be constant 
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AA I 
in ZA' , and thus a function of x alone, with 

(IQ.2.5) @jA' = Pj@A '(x) 

To prove that @A,(X) satisfies the zero rest mass equations we must note that 

since f.. is a collection of twistor functions it must satisfy 
13 

V A' 
(10.2.6) ~A' A Pxfij = 0 

Consequently, if we transvect (10.2.2) with V A'A we get: 

AA I 

(10.2.7) p[i V pxgj]A,B, : 0 , 

which says that ?AA'pxgjA,B , is global. However, since vAA'QxgjA,B , is homogeneous 

of degree -i in HA, , the only way it can be global is for it to vanish: 

(10.2.8) vAA'pxgjA,B , = 0 

Transvecting (10.2.8) with %B' and using (10.2.4) and (10.2.5), the desired result 

?AA'@A , = 0 follows immediately. 

Next, we must prove that @A' is independent of the coboundary freedom available 

in the specification of f.. . To see this, observe that the transformation 
l] 

-3 -3 -3 
(10.2.9) fij --÷ fij + P[igj] 

must be accompanied by the substitution 

-I 
(i0.2.10) g 

jA'B' ---+ gjA'B' + gjZA'~B ' 

in equation (10.2.2). However, a glance at (10.2.4) shows that @jA' is invariant 

under this substitution. Conversely, we wish to see that if @A' vanishes, then fij 

must be cohomologically trivial. From (10.2.4) it follows that if ~A' vanishes, 

AA' 
then gjA'B' must be of the form gj~A,~B, for some 0-cochain gj dependent upon x 

and ZA' " From (10.2.2) it then follows that 

-3 -3 
(10.2.11) Pxfij = p[igj] , 
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but we are not done yet, since it remains to be shown that gj is indeed a 0-cochain 

on twistor space--thus far, we have merely established that gj is dependent on 

XAA , and ZA' * The situation is ir~mediately remedied, however, if we hit (10.2.11) 

A' 
with VA,Z A , thereby obtaining 

~A w -3 
(10.2.12) p[iZA , gj] = 0 , 

which implies, since ZA' gj is homogeneous of degree -2, that ZA' gj vanishes. 

That concludes the proof for s = 1/2. Now let us consider the case s = - 1/2. 

If fij is homogeneous of degree -i, then Pxfij is cohomologically trivial, i.e., we 

have: 

-i -i 
(10.2.13) Pxfij = p[igj] , 

-i A 
for some 0-cochain gj If we operate on (10.2.13) with ZA,VA 

vA ,-i 
(10.2.14) P[iZA ' A gj] = 0 

A'-I 
which implies, since ZAV A gj is homogeneous of degree zero, that 

(i0.2.15) ~A'~A'g~ = Pj~A(X) , 

then we obtain 

where @A(X) is a function of x alone. Transvecting equation (10.2.15) with 

~B' VB'A we get  

B'A 
(10.2.16) ZB 'V @A = 0 

on account of the identity ~(A,VB,)A = 0 . And since (10.2.16) must hold for all 

A'A 
values of ZA, , we get the field equation V @A = 0 , as desired. It is straight- 

forward to check that @A is independent of the coboundary freedom available to fij " 

Moreover, one can verify that if @A vanishes, then fij itself must be cohomologically 

trivial. [] 

10.3 Spin-Bundle Sequences. 

The results of Section 10.2 can be obtained from a somewhat more refined point 

of view through the consideration of various exact sequences of sheaves. It should 
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be pointed out that quite a bit of lore has already been developed in this connec- 

tion, and it would be impossible to give an account here which is in any sense in- 

clusive of all the work that has been done in this vein. To simplify matters, let 

us assume that we are working away from infinity in complex Minkowski space, and 

3 1 
thus that the region of twistor space with which we are concerned is P -PI ' where 

pl is the line I d~ . Since pl is given by the equation ZA' = 0 , we can take ZA 
I I ' 

now to be non-vanishing. As before, we shall denote by O(n) the sheaf of germs 

of holomorphic functions on twistor space, twisted by n. Let us denote by F(n) the 

AA' 
sheaf of germs of functions of x and %A' , homogeneous of degree n in ZA' " The 

sheaf F(1) is called the sheaf of germs of holomorphic cross sections of the spin 

A' 
bundle. The subsheaf of F(n) consisting of germs f(x,z) satisfying TA.V A f(x,z) = 0 

is naturally isomorphic to O(n), and thus the sequence 

VA ' 
~A' A 

(10.3.1) 0 ~ O(n) . ~ F(n) - -  ~ FA(n+I) 

is exact, where FA(n+l) is the sheaf of germs of spinor~valued holomorphic functions 

AA ' 
of x and ZA' , homogeneous of degree n+l in ZA' " Sequence (10.3.1) can be 

completed as follows : 

A' B'A 
~A,VA ~B ,V 

(10.3.2) 0 --÷ O(n) ----+ F(n) --FA(n+I) ~ F(n+2) ----+ 0 

/ \ 
A (n+l) 

/ \  
0 0 

where the auxilliary sheaf A(n+l) defined by 

B'A 
(10.3.3) A(n+l) = Image(~A,V~' ) = Kernel(TB,V ) 

has been introduced in order to facilitate the disintegration of (10.3.2) into a 

pair of short exact sequences: 

(10.3.4) 0 ----+ O(n) --+ F(n) -- ) A(n+l) --÷ 0 

(10.3.5) 0 > A(n+l) ~ FA(n+I) -----+ F(n+2) > 0 
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Now let us consider, as an example, the helicity 1/2 case n = -3. The long exact 

cohomology sequence associated with (10.3.4) contains the segment 

(10.3.6) H0(M,A(-2)) ----+ HI(M,O(-3)) ~÷ HI(M,F(-3)) ----+ HI(M,A(-2)) , 

and associated with (10.3.5) we have the following segments: 

(10.3.7) 0 --+ H0(M,A(-2)) ~ H0(M,FA(~2)) 

(i0.3.8) H 0(M,F(-I)) --÷ H I(M,A(-2)) --÷ H I(M,F A(-2)) 

AA' 
Now H0(M,FA(-2)) and H0(M,F(-I)) both consist of global functions of x and ZA' 

which have negative twist in ~A' ; consequently they must both vanish. From 

(i0.3.7) we then obtain that H 0(M,A(-2)) vanishes, and from (i0.3.8) we deduce that 

the map from HI(M,A(-2)) to HI(M,FA(-2)) is injective. Gathering these facts to- 

gether we deduce that the sequence 

(10.3.9) 0 ~ HI(M,O(-3)) --÷ HI(M,F(-3)) ~÷ HI(M,FA(-2)) 

is exact. The group HI(M,F(-3) is the set of all primed spinor-valued functions 

fA' (x) defined over the region of spacetime corresponding to M, whereas HI(M,FA(-2)) 

is the set of all unprimed spinor-valued functions fA(x) on the same region. It is 

not difficult to verify that the induced map between H I(M,F(-3)) and H I(M,FA(-2)) 

is given by 

(10.3.10) fA '(x) --+ A fA '(x) ' 

for a typical element. Sequence (10.3.9) asserts that HI(M,O(-3)) is precisely the 

kernel of this map, and a glance at (10.3.10) shows that the kernel consists pre- 

cisely of ZRM fields of the appropriate helicity. 

Thus we have established Proposition 10.2.1 again, but from a slightly different 

point of view. In fact, a somewhat stronger result has been obtained, namely an 

isomorphism between the twister cohomelogy group of interest and the relevant set 

of ZRM fields. It is perhaps instructive to arrive at this result from yet another 

angle, using an exact sequence which codifies more directly the procedure outlined 
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in Proposition 10.2.1. Let us denote by ~A' the subsheaf of FA, consisting of 

germs satisfying the zero rest mass equations: vAA'~A,(X,Z) = 0 . Then, for 

example, the following sequence is exact: 

(10.3.11) 0 ÷ 0(-3) ZA'ZB' %B' 
-- ÷ ~A,B,(-I) > @A,(0) ~> 0 

To calculate the eohomology of the @ sheaves, one can use the following sequences: 

V A 'A 

(10.3.12) 0 ----+ ~A' (n) -----+ FA, (n) + FA(n) ~ 0 

B' 
vAN' 

(10.3.13) 0 --÷ ~A'B' (n) --÷ FA,B, (n) VA ~ FAA , (n) .... > F(n) -----+ 0 

Now the long exact cohomology sequence associated with (10.3.11) contains the 

segment 

(i0.3.14) H0(M,~A,B , (-i)) --+ H0(M,~A, (0)) - ) HI(M,O(-3)) --÷ HI(M,~A,B , (-i)) . 

Using (i0.3.13) one can establish that both H 0 and H 1 vanish for }A,B, (-1), whence 

we have the isomorphism 

(10.3.15) 0 --÷ H0(M,~A, (0)) --+ HI(M,O(-3)) --+ 0 . 

finally, an elementary calculation using (10.3.12) shows that H0(M,}A, (0)) con- And 

sists of the relevant set of zero rest mass fields. 

For positive helicity (s > 0) sequence (10.3.11) can be generalized as follows: 

(10.3.16) 0 ----+ 0(-2s-2) ~ }A,...B,C, (-i) ~ ) ~A,...B, (0) --+ 0 , 

where the map ~ is multiplication by ZA,...ZB,ZC, , the total number of Z's being 

C' 
2s+l. The map 8 is contraction with 

For negative helicity, the analogue of (10.3.16) is the following sequence: 

(i0.3.17) 0 ----+ P(-2s-2) --÷ O(-2s-2) (3 ) @A...B ~ ) @A...BC ---~ 0 

A 
The sheaf P(-2s-2) consists of polynomials in ~ and ZA' homogeneous of degree -2s-2. 

~A" ~B ~A ) A' The map ~ is . (-2s-3 occurrences of , and ~ is the operator ZA,Vc 
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By using (10.3.16) and (10.3.17), one can establish again the connection be- 

tween twistor cohomology and ZRM fields, for all helicities. These two sequences, 

incidentally, are the original sequences suggested by R. Penrose in order to solve 

the problem of relating ZRM fields and twistor sheaf cohomology groups (3] . The se- 

quence (10.3.2) is somewhat more advantageous, at least in certain respects, inas- 

much as the spin-bundle sheaves F(n), etc., are easy to work with directly--this 

point of view has been reflected in work by M. Eastwood, R. Penrose, and R.O. Wells, 

Jr.. As another alternative to sequences (10.3.16) and (10.3.17) one can consider 

the single sequence 

T A' 
A' 

(i0.3.18) 0 ) 0(-2s-2) ) %, (-2s-2) ~ ÷ O(~2s) -----+ 0 

which can be used to derive the relevant twistor cohomology relationships for all 

helicities--as with sequence (10.3.2), certain complications arise on account of 

the appearance of potentials in the various formulae, but these complications are 

net particularly s e r i o u s  ( 4 )  . 

10.4 Remarks on the Geometry of n-Twistor Systems. 

Now we shall begin to set up some of the machinery necessary for the treatment 

of more general categories of fields, using twistor sheaf cohomological methods. 

Our attitude will be to regard n-twistor systems from a somewhat more abstract 

point of view, treating them as higher-dimensional complex spaces with relatively 

little structure at first, and then introducing more and more structure piece by 

piece. In this way we arrive at the conclusion that certain operators (and their 

associated eigenvalues) are more "primitive" than others, since they can be intro- 

duced at an earlier stage in the whole process and require less structure in their 

initial definition. 

Let S a denote C m+l (m > i) regarded as a complex vector space, and denote by 

a I 
Sa , S , and Sa, the dual space, the complex conjugate space, and the dual complex 

conjugate space to S a , respectively. One can introduce the idea of a "generalized 

twistor" as a point in the space (S a , Sa,) . Thus by a generalized twistor one 

means a pair ( a , ~a, ) with wass a and ~a,SSa, . 
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v a' 

The dual space to (S a S ) is the space (S ,S a ). If (~ ,T ) is a dual 
' a' a a 

twistor [henceforth we shall drop the adjective "generalized" when there is no op- 

portunity for confusion] then its inner product with the twistor (w a , ~a,) is de- 

a l 
+ ~ ,T The complex conjugate of (w a ,~ ,) is the dual twistor fined to be waua 

a a 
-a v 

(~a ,w ), and the norm of ( a 'Za' ) is defined by the inner product 

-a r 

(10.4.1) wa~a + Za,~ , 

which, using a standard argument [cf. Section 2.3], can be shown to have signature 

(m+l , m+l). The space (S a ,S ,) i s  c l e a r l y  C 2m+2 , and t h e  a s s o c i a t e d  p r o j e c t i v e  a 

02m+2 space is p2m+l The space is divided into three regions denoted C 2m+2 _ , + , 

2m+2 2m+2 
C O , and C , according as to whether the norm (10.4.1) is positive, zero, or 

n e g a t i v e ;  t h e  t h r e e  c o r r e s p o n d i n g  r e g i o n s  o f  p2m+l a r e  d e n o t e d  p2m+l+ , PO2m+l , and  

2m+l 
P 

In the case of m = i, we recover standard twistor space, with its usual norm 

of signature (2,2). Spaces of n twistors fit into the picture for odd values of m, 

with the identifications 

a A 

(10.4.2) w = ~i ' Za' = 7iA' 

The spaces with m even do not admit of an obvious spacetime interpretation, although 

it must be admitted that they do fit almost uncomfortably naturally into the general 

scheme. 

The Grassmannian of projective m-planes in p2m+l has dimension (m+l) 
2 

In the 

case m = i [where the 1-planes are, of course, lines] the Grassmannian can be re- 

garded as complexified compactified Minkowski space. For general m a similar inter- 

pretation is available, and for the "finite" points of the associated (m+l)21dimen - 

sional "hyperspace"--to borrow a convenient term from the literature of science 

aa l 
fiction--we can introduce a set of variables x as coordinates. The Grassmannian 

of projective j-planes in pk is often denoted G(j,k). The space G(I,3) can be 

realized as a quadric hypersurface in ~DS. In the general case of interest here, 

the space G(m,2m+l) can be realized as an algebraic variety of dimension (m+l) 2 in 

pr, where r is given by the formula 
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(10.4.3) r = (2m+2)!/[(m+l)!] 2 

this being the dimension of the space of skew-symmetric tensors of valence m+l in 

c2m+2 

in the case m=l there is a "preferred" line pl in p3 corresponding to the 
I 

vertex of scri in spacetime. The remaining points of scri correspond to lines in p3 

which meet p3 The "finite" points of spacetime correspond to lines in p3 which 
I " 

avoid pl Likewise, there is a preferred m-plane pm in p2m+l The "finite" points 
I " I " 

of the hyperspace G(m,2m+l) correspond, by definition, to m-planes in p2m+l which 

avoid pm "Infinity" in G(m,2m+l) consists of points which correspond to m-planes 
I " 

m The points of G(m,2m+l) can be classified by a number in p2m+l which intersect PI " 

m 
d which is the dimension of the intersection of the corresponding m-plane with P 

I 

For finite points we put d = -i. In the case of standard twistor space, given by 

m=l, there are just three classes of associated spacetime points: finite points 

(d = -i), non-vertex points on scri (d = 0), and the vertex of scri (d = 1). In the 

general case d has the range d = -l,0,...,m; the case d = m corresponding to the m- 

m 
plane PI i t s e l f .  

A generalized twistor ( a '%a' ) lies on the m-plane corresponding to the point 

as' 
x if and only if the relation 

(10.4.4) a ixaa ' 

holds. We can characterize generalized twistors in terms of solutions of the 

equation 

(10.4.5) (m+l)Vaa,~ b = @~Vca,~ c 

In fact, we have the following result (cf. Hughston, 1979), which is analogous to 

Proposition 2.4.2: 

10.4.6 Theorem. The general solution of equation (10.4.5) is given by 

(10.4.7) ~a = wa _ ixaa' a I i 

where w a and z are constant. a I 
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Proof. Differentiating (10.4.5) one has 

(10.4.8) (m+l)Vbb,Vaa ~c = c d , ~aVbb,Vda,~ 

which, exchanging aa' and bb' , can be written as 

(10.4.9) (m+l)V ~ c c d 
aa,Vbb,~ = 6bVaa,Vdb,~ 

Since the V's commute, the left hand sides of equations (10.4.8) and (10.4.9) are 

equal; therefore: 

~d 6~Va a {d 
(10.4.10) ~Vbb,Vda , = ,Vdb , 

Transvecting equation (10.4.10) with @b gives 
c 

(10.4.11) Vab,Vda,~ d : (m+l)Vaa,Vdb,~ d 

On the other hand, if equation (10.4.10) is transvected instead with 6 a one obtains 
c 

(m+l)Vbb,Vda,~ d = Vba,Vdb,~ d which, substituting b with a , reads: 

(10.4.12) (m+l)Vab,Vda,~ d = Vaa,Vdb,~ d 

For m > 0 , equations (10.4.11) and (10.4.12) together imply 

(10.4.13) Vaa,Vdb,~ d = 0 , 

showing that Vdb,~ d is constant; from (10.4.5) we can therefore infer that ~a is 

aa' a 
linear in x Inserting the most general linear expression for ~ into (i0.4.5), 

the desired result (10.4.7) follows after a short calculation (S) . [] 

The locus of a twistor (W a ,~a,) is defined to be the set of points in the 

space G(m,2m+l) corresponding to the pencil of m-planes in p2m+l through the point 

( a ,~a,). From (10.4.4) and (10.4.7) it follows that the locus, insofar as 

finite points are concerned, is the region where the associated spinor field ~a(x) 

vanishes. 

When m is odd, and the n-twistor relations (10.4.2) are assumed, equation 

(10.4.4) reads 
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(10.4.14) A . AA'j 
i = lXi ~jA' 

where we have made the identification 

aa' AA'j 
(i0.4.15) x = x. 

l 

for the coordinates of finite points in G(m,2m+l). Complex Minkowski space is 

embedded naturally as a linear subspace in this space, given by 

xAA'j AA'~j 
(10.4.16) i = x l 

We shall take the attitude that fields on spacetime can be regarded as restric- 

AA' 
tions, down to spaeetime, of "hyperspace" fields. Thus, a field @(x ) on space- 

time should be thought of as the restriction Px of some hyperspace field ~(x'AA'J)I 

according to the following scheme: 

m~' AA'j) : }(x~'~!) (10.4.17) ~(x ) = Px'~(xi l 

AA'j) exhibit suitable properties, condi- By requiring that the hyperspace field ~(x i 

tions can be imposed on the spacetime field ~(x) projected from it. 

10.5 Massive Fields Revisited. 

The contour formulae introduced for massive fields in Section 5.2 can be 

reinterpreted in an interesting way in the light of the remarks made in Section 

10.4. 

In Section 5.2 we were concerned with contour integral formulae of the form 

A...j°...i. (x)=/px ~Aj .~A,if(Z~)~ (10.5.1) @A'. "" 

Using the notation of Section 10.4, formula (i0.5.1) can be rewritten as: 

, (x) = SPx@ a. "'~a "'f(wa 'ga ')A~ ' (10.5.2) @a...a ... '" 

where, in addition to (10.4.2), we use the notation ~ = -~/$w a , along with a 

(10.5.3) 0xf(~ a ,~a,) = pxf(W~ ,~A,i ) 

AA' 
= f(ix ~A' 'ZA') 
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Now it turns out that formula (10.5.2) can be evaluated in two steps. First we 

evaluate the twistor function f(~0 a ,Za,) on hyperspace (using a suitable set of z- 

coefficients, as will be described below). Then, we take a number of derivatives 

x~'J i = ~/~ , and restrict the result of the hyperfield, using the operator VA,Aj 

down to spacetime. This gives us the field @a...a'... (x) . 

Suppose the number of T-coefficients in (10.5.2) is denoted z, and the number 

of ~-coefficients is denoted ~. The coefficient structure for the hyperspace evalu- 

^ ^ 
ation is determined as follows. If 7-z is positive, we use z-z coefficients of the 

~-type. If Z-~ is positive, on the other hand, we use ~-~ coefficients of the ~- 

type. 

The number of derivatives we take before restricting the hyperfield down to 

spacetime is simply the absolute value I~-~I 

It should be observed that when we examine hyperfields, we need only consider 

fields whose indices are all of the same type. Let us denote by Px the restriction 

aa' 
down to the hyperspace point x Then the following three contour integral 

formulas are of interest to us: 

(10 5.4) ~ ..b(£) /Px~a.. ~ a . = .~bf(~ ,~a,)A~ a. 

(10.5.5) ~(x) =/px__f( a 'Za')AT 

(10.5.6) %a,...b,(X) =/Px~a,...zb,f(~a_ ,Za,)A% 

By taking derivatives, and using the identity 

A 
(10.5.7) iV ,O x 

aa = Qx~a~a ' 

which is valid for functions of w a and 

form (10.5.2). 

a' ' we can recover general fields of the 

10.6 Towards the Cohomology of n-Twistor Systems. 

The fields defined in formulae (i0.5.4), (i0.5.5), and (10.5.6) exhibit a 

rather curious feature; they satisfy the following set of field equations: 
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(10.6.1) Va, [a~b]...c = 0 , 

(10.6.2) Va,[aVb]b,~ = 0 , 

(10.6.3) Va[a,~b,]...c, = 0 

These relations generalize the ZRM equations in a natural way, and in the case m = 

1 they reduce to the Z_KM equations. Note that in the case of a scalar field ~ we 

have a second order equation (analogous to the wave equation), whereas in the 

other case we have first order equations. However, as was pointed out by M. East- 

wood, equations (10.6.1) and (10.6.3) imply the second order equations 

(10.6.4) Vp,[pVq]q,~a... b = 0 , 

(10.6.5) Vp, [p?q]q'~a'...b' = 0 , 

as one might expect by analogy with the case m = I. 

We can classify the ~-fields with a half-integer r. I~en r is positive we have 

a field with 2r primed indices, and when r is negative we have a field with -2r 

unprimed indices. When r = 0 we have a scalar field. For lack of better terminolo~ 

gy, we shall refer to r as the "hyperhelicity". 

It turns out, rather remarkably, that solutions of the free field equations 

(10.6.1), (10.6.2), and (10.6.3) can be described as elements of certain cchomology 

groups. The relevant groups can be described as follows. Let M be a region of 

p2m+l swept out by a set of m-planes corresponding to the points in a region M of 

hyperspace. Recall that if we are dealing with n-twistor systems, then m = 2n-i . 

Denote by O(q) the sheaf of germs of holomorphic functions on M, twisted by q. 

Then we have: 

10.6.6 Proposition. Eler~ents of the group 

(10.6.7) Hm(~i,O(-2r-m-1)) 

correspond to solutions of the hyperspace free field equations (10.6.1), (10.6.2), 

and (10.6.3) for hyperhelicity r, over the domain M. 
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Proof. We shall establish the result explicitly for the case m = 2, with 

r = 1/2. Unfortunately, this is not one of the cases which readily admits of a 

spacetime interpretation (for which m must be odd); but this is not a serious draw- 

back, since the more general cases can be inferred directly from the method that 

will be outlined here. Our proof will follow rather closely the material in 

Section 9.3. 

We are concerned with the group H2(M5,0(-4)), where M 5 is a region of p5 

swept out by a set of 2-planes. 

aa' 
down to the 2-plane x we have 

Let fijk be a representative cocycle. Restricting 

(10.6.8) 
-4 -2 

PxSa,Zb,fijk = p[ifjk]a,b , (x,z) 

since H 2 is trivial for twist greater than -3, on p2 . 

-2 
(10.6.9) p[ifjk]a , [b,Zc,] = 0 

-i 
from which we deduce the existence of an fka'b'c' 

-2 -i 
(10.6.10) fjka'[b'~c '] = P[jfk]a'b'c' 

such that 

Skewing with Zc' we get 

Skewing with Zd' we get 

-i 
(10.6.11) P[jfk]a' [b'c'Zd '] = 0 

whence we obtain: 

(10.6.12) 

0 
Now since f 

a'b'c'd' 

-i 0 

fka' [b'c'Zd '] = Pkfa'b'c'd ' 

is global and has twist zero, it must be a function of x 

alone; thus we obtain our field 

(10.6.13) 
0 

(xaa ') b'c'd' 
~a '  = f a ' b ' c ' d  '~ 

To show that ~a' satisfies the field equation 

(10.6.14) Vb[b,}a, ] = 0 
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whence we have 

-2 -2 
(10.6.17) Dfjka'b' = P[jfk]a'b' 

-2 
for some fka'b' " Applying Zc' and skewing, we get 

-2 -2 
(10.6.18) Dfjka' [b'~e '] = P[jfk]a' [b'~c '] 

Now suppose we take (10.6.10), and hit it with D. Then we obtain 

-2 -i 
(10.6.19) Dfjka,[b,~c,] = p[jDfk]a,b,c~ 

Since the right hand sides of (10.6.18) and (10.6.19) are equal, we have 

-2 -3_ 
(10.6.20) P[jfk]a' [b'~c '] = p[jDfk]a'b'e' 

which asserts that the cochain 

-2 -i 

(10.6.21) fka' [b'~c '] - Dfka'b'c' 

is global. Since the twist is negative, it follows that (10.6.21) must vanish, 

whence we deduce, skewing ~d' ' that 

-i 
(10.6.22) Dfka, [b,e,Zd, ] = 0 , 

from which we get D~ = 0 , using (10.6.12) and (10.6.13). However, it is not a w 

difficult to verify that if we trace the action of D through the various formulae 

above then (10.6.15) implies 

is a somewhat more insidious operation. We proceed as follows: 

Let D be any operator which annihilates the expression Px~a,~b,fijk . In 

our case D is defined by 

(10.6.15) D: Px~a,~b,fijk ~÷ Ve[e,~a,]~b,Pxfij k 

which vanishes; but the results which follow are independent of the specific choice 

of D. From (10.6.8) we obtain 

-2 
(10.6.16) P[iDf'k] a'b'] = 0 
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(10.6.23) D: ~a' + Ve [e'~a'] 

showing that Oa, s a t i s f i e s  t h e  f i e l d  e q u a t i o n s ,  a s  d e s i r e d  (6) , [ ]  

It would be nice to sharpen up Proposition 10.6.6 a bit, so as to specify 

precisely for what sort of domains an actual isomorphism is obtained between H m 

and the relevant set of hyperfields. A reasonable candidate for M is the space 

p4n-i (or possibly its closure), which in twistor terms is the space Z<~Z i > 0 
+ l 

The (2n-l)-planes lying entirely within p4n-i include, as a subset, a four- + 

dimensional family of planes corresponding to the future tube CM + in complex 

Minkowski space. The "Minkowskian" (2n-l)-planes are obtained by looking at n- 

AA' 
twistors which are of the form Z~'3 = (ix ZA'•3 , ~A,j). For each fixed value of 

AA' AA' 
x we obtain a (2n-l)-plane by varying ZA'i " Note that x is in CM + if and 

only if Z.Z<~-il ~ = i(xAA' - x-AA')%A,j~JA is strictly positive for all values of ZA' 
i 

Before an element of H 2n-I can be used to represent a particle state, it must 

be put into an eigenstate of a suitable set of observables, as described in 

Chapters 5, 6, 7, 8. One particular observable--namely, the "hyperhelicity"--is 

already implicit in the construction, since it enters into the twist of the sheaf. 

In the case of 3-twistor functions, the hyperhelicity is -~B , with B the baryon 

2n-i 
number. If the cocycle representing some element of H is placed into an eigen- 

state of a suitably "complete" set of observables, then the associated ~-hyperfield 

will restrict down--after an appropriate number of derivatives have been taken--to 

an essentially unique Minkowski space wave function. The restrictions of higher 

derivatives of the ~-hyperfield down to Minkowski space contain no essential new 

information, but do include spacetime derivatives of the basic field already 

obtained. 

Chapter I0, Notes 

i. The Kerr theorem is discussed in Penrose (1967), to which the reader is re- 

ferred for further details. 

2. For an account of the 27 lines on the cubic surface in p3 see, for example, 
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Mumford (1976). In the case of twister theory the quadric surface in p3 is also 

of special interest. Associated with such a surface is a solution of the twister 

equation of valence two: 

vA(A'~ B'C') = 0 

This differential equation is rather curious inasmuch as it admits non-trivial 

solutions in curved spacetime. In particular, the Kerr solution of Einstein's 

equations possesses a solution of the valence two twister equation. For discussion 

related to this matter see Carter (1968), Walker and Penrose (1970), Hughston, 

Penrose, Sommers, and Walker (1972), Hughston and Sommers (1973a and 1973b), and 

Sommers (1973). 

3. These results, which were first described in Twister Newsletter in 1977, 

appear in Penrose (1979). 

4. For more extensive accounts of the material described in this section see, 

for example, Jozsa (1976), Pratt (1977), Moore (1978), Burnett-Stuart (1978), 

Weber (1978), Ward (1979), and Wells (1979). There are also to be found numerous 

Twister Newsletter articles on the subject. 

5. It is also interesting to note that the geodesic shearfree condition general- 

izes in an interesting way to the cases for which m is greater than one. One ob- 

tains the following formula: 

(~ [a'vb' ]b~ [e' )~d'] = 0 
\ 

As will be described elsewhere, there exists an analogue of the Kerr theorem which 

allows one to solve this equation using complex analytic methods. 

6. I am indebted to M. Eastwood for a number of illuminating discussions in 

connection with the material of Section 10.6. 
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